分析 先求出函數(shù)f(x)的定義域,再根據(jù)復(fù)合函數(shù)的單調(diào)性求出f(x)的單調(diào)遞增區(qū)間.
解答 解:∵函數(shù)f(x)=log4(7+6x-x2),
∴7+6x-x2>0,
即x2-6x-7<0,
解得-1<x<7;
又x=3是二次函數(shù)t=7+6x-x2的對(duì)稱(chēng)軸,
∴f(x)=log4(7+6x-x2)的單調(diào)遞增區(qū)間是(-1,3].
故答案為:(-1,3].
點(diǎn)評(píng) 本題考查了復(fù)合函數(shù)的單調(diào)性應(yīng)用問(wèn)題,解題時(shí)應(yīng)熟記復(fù)合函數(shù)的單調(diào)性判斷,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x-2y=0 | B. | x+2y-4=0 | C. | 2x+y-5=0 | D. | 2x-y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2,2] | B. | [2,+∞) | C. | (-∞,-2]∪[2,+∞) | D. | (-∞,-1]∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3-$\sqrt{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 3+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1+i | B. | 2-i | C. | 3-i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com