分析 (1)利用極坐標與直角坐標的互化方法,即可得出結論;
(2)聯(lián)立曲線C1與曲線C2的方程,利用參數(shù)的幾何意義,即可求|AB|的最大值和最小值.
解答 解:(1)對于曲線C2有$ρ=8cos(θ-\frac{π}{3})$,即${ρ^2}=4ρcosθ+4\sqrt{3}ρsinθ$,
因此曲線C2的直角坐標方程為${x^2}+{y^2}=4x+4\sqrt{3}y$,其表示一個圓.(5分)
(2)聯(lián)立曲線C1與曲線C2的方程可得:${t^2}-2\sqrt{3}sinα•t-13=0$,
∴t1+t2=2$\sqrt{3}$sinα,t1t2=-13
$|AB|=|{t_1}-{t_2}|=\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}=\sqrt{{{(2\sqrt{3}sinα)}^2}-4(-13)}=\sqrt{12{{sin}^2}α+52}$,
因此sinα=0,|AB|的最小值為$2\sqrt{13}$,sinα=±1,最大值為8.(10分)
點評 本小題主要考查極坐標系與參數(shù)方程的相關知識,具體涉及到極坐標方程與平面直角坐標方程的互化、利用直線的參數(shù)方程的幾何意義求解直線與曲線交點的距離等內容.本小題考查考生的方程思想與數(shù)形結合思想,對運算求解能力有一定要求.
科目:高中數(shù)學 來源: 題型:解答題
態(tài)度 調查人群 | 放開 | 不放開 | 無所謂 |
已婚人士 | 2200人 | 200人 | y人 |
未婚人士 | 680人 | x人 | z人 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(\sqrt{3}\;,\;\;2)$ | B. | (-3,2) | C. | (1,2) | D. | $(\sqrt{3}\;,\;\;\sqrt{5})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a2=r2-$\frac{1}{4}$ | B. | a=r | C. | a2=r2+$\frac{1}{4}$ | D. | a2=r2+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com