A. | [$\frac{1}{9}$,+∞) | B. | (-∞,$\frac{1}{9}$] | C. | [$\frac{10}{9}$,+∞) | D. | (-∞,$\frac{10}{9}$] |
分析 由t∈[-2,-1]時(shí),3tf(2t)-mf(t)≥0恒成立得到m(3t-3-t)≤3t(32t-3-2t),分離參數(shù)m后求出32t+1的最大值得答案.
解答 解:∵f(x)=3x-3|x|,由3tf(2t)-mf(t)≥0,得3t(32t-3|2t|)-m(3t-3|t|)≥0,
即m(3t-3|t|)≤3t(32t-3|2t|),
∵t∈[-2,-1],∴也就是m(3t-3-t)≤3t(32t-3-2t),
即$m≥\frac{{3}^{t}({3}^{2t}-{3}^{-2t})}{{3}^{t}-{3}^{-t}}$=3t(3t+3-t)=32t+1.
∵t∈[-2,-1],∴${3}^{2t}∈[\frac{1}{81},\frac{1}{9}]$,則${3}^{2t}+1∈[\frac{82}{81},\frac{10}{9}]$,
則m$≥\frac{10}{9}$.
故選:C.
點(diǎn)評 本題主要考查了函數(shù)恒成立問題,恒成立問題多需要轉(zhuǎn)化,涉及分離參數(shù),同時(shí)轉(zhuǎn)化過程提出了等價(jià)的要求,考查了函數(shù)最值的求法,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com