4.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F為  $({\sqrt{5},0})$,點(diǎn)F到某條漸近線的距離為1,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{4}$-y2=1B.x2-$\frac{{y}^{2}}{4}$=1C.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1D.$\frac{3{x}^{2}}{5}$-$\frac{3{y}^{2}}{20}$=1

分析 通過雙曲線的焦點(diǎn)坐標(biāo)求出c,焦點(diǎn)到漸近線的距離求出b,然后求解a,得到雙曲線方程.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F為 $({\sqrt{5},0})$,可得c=$\sqrt{5}$.
點(diǎn)F到某條漸近線y=$\frac{a}x$的距離為1,可得:$\frac{\sqrt{5}\frac{a}}{\sqrt{1+\frac{^{2}}{{a}^{2}}}}$=1,可得b=1,則a=2.
則雙曲線的方程為:$\frac{{x}^{2}}{4}$-y2=1.
故選:A.

點(diǎn)評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,雙曲線方程的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$=(2,tanθ),$\overrightarrow$=(1,-1),且$\overrightarrow{a}$∥$\overrightarrow$,則tan($\frac{π}{4}$+θ)等于( 。
A.2B.-3C.-1D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若集合U={1,2,3,4,5,6},A={2,5,6},B={1,3,5},那么(∁UA)∩B=(  )
A.{5}B.{1,3}C.{2,6}D.{1,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知點(diǎn)P($\sqrt{3}$,-1),Q(sin2x,cos2x),O為坐標(biāo)原點(diǎn),函數(shù)f(x)=$\overrightarrow{OP}•\overrightarrow{OQ}$.
(1)求函數(shù)f(x)的對稱中心和單調(diào)增區(qū)間;
(2)若A為△ABC的內(nèi)角,a,b,c分別為角A,B,C的對邊,f(A)=2,a=5,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在y軸上,若雙曲線C的一條漸近線與直線$\sqrt{3}$x+y-4=0平行,則雙曲線C的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某企業(yè)尋找甲、乙兩家代工廠為其生產(chǎn)某種產(chǎn)品,并通過檢測該產(chǎn)品的某項(xiàng)指標(biāo)值來衡量產(chǎn)品是否合格.現(xiàn)從甲、乙生產(chǎn)的大量產(chǎn)品中各隨機(jī)抽取50件產(chǎn)品作為樣本,測量出它們的該項(xiàng)指標(biāo)值,若指標(biāo)值落在(170,230]內(nèi),則為合格品,否則為不合格品.表是甲廠樣本的頻數(shù)分布表,如圖是乙廠樣本的頻率分布直方圖.
質(zhì)量指標(biāo)值頻數(shù)
(150,170]3
(170,190]12
(190,210]20
(210,230]a
(230,250]7
表:甲廠樣本的頻數(shù)分布表
(I) 求頻數(shù)分布表中a的值,并將頻率分布直方圖補(bǔ)充完整;
(II) 若將頻率視為概率,某個月內(nèi),甲、乙兩廠均生產(chǎn)了5000件產(chǎn)品,則甲、乙兩廠分別生產(chǎn)出不合格品約多少件?
(III)根據(jù)已知條件完成下面的2×2列聯(lián)表,并回答能否有85%的把握認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的該項(xiàng)質(zhì)量指標(biāo)值與甲、乙兩廠的選擇有關(guān)”?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d為樣本容量)
甲廠乙廠合計(jì)
 合格品
不合格品
合計(jì)
P(K2≥k)0.150.100.050.010
k2.0722.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)$f(x)=sinx,x∈[0,\frac{3π}{2}]$的單調(diào)遞增區(qū)間是( 。
A.$[0,\frac{π}{2}]$B.[0,π]C.$[\frac{π}{2},π]$D.$[\frac{π}{2},\frac{3π}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC 中,a,b,c 分別是內(nèi)角 A,B,C 的對邊,若c=4$\sqrt{2}$,B=45°,△ABC 的面積S=2,則a=1;b=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.經(jīng)過點(diǎn)A(1,0)作曲線f(x)=x2的切線,則此切線的方程為y=0或y=4x-4.

查看答案和解析>>

同步練習(xí)冊答案