11.已知5件產(chǎn)品中有2件次品,其余為合格品.現(xiàn)從這5件產(chǎn)品中任取2件,恰有一件次品的概率為( 。
A.0.4B.0.6C.0.8D.1

分析 首先判斷這是一個(gè)古典概型,而基本事件總數(shù)就是從5件產(chǎn)品任取2件的取法,取到恰有一件次品的取法可利用分步計(jì)數(shù)原理求解,最后帶入古典概型的概率公式即可.

解答 解:這是一個(gè)古典概型,從5件產(chǎn)品中任取2件的取法為${{∁}_{5}}^{2}=10$;
∴基本事件總數(shù)為10;
設(shè)“選的2件產(chǎn)品中恰有一件次品”為事件A,則A包含的基本事件個(gè)數(shù)為${{∁}_{3}}^{1}•{{∁}_{2}}^{1}$=6;
∴P(A)=$\frac{6}{10}=\frac{3}{5}$=0.6.
故選:B.

點(diǎn)評(píng) 考查古典概型的概念,以及古典概型的概率求法,明白基本事件和基本事件總數(shù)的概念,掌握組合數(shù)公式,分步計(jì)數(shù)原理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,奇數(shù)項(xiàng)成公差為1的等差數(shù)列,當(dāng)n為偶數(shù)時(shí)點(diǎn)(an,an+2)在直線(xiàn)y=3x+2上,又知a1=1,a2=2,則數(shù)列{an}的前2n項(xiàng)和S2n等于$\frac{{{n^2}-n-3+{3^{n+1}}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知2件次品和3件正品混放在一起,現(xiàn)需要通過(guò)檢測(cè)將其區(qū)分,每次隨機(jī)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)檢測(cè)結(jié)束.
(Ⅰ)求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;
(Ⅱ)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用100元,設(shè)X表示直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求X的分布列和均值(數(shù)學(xué)期望)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.現(xiàn)有橡皮泥制作的底面半徑為5,高為4的圓錐和底面半徑為2,高為8的圓柱各一個(gè),若將它們重新制作成總體積與高均保持不變,但底面半徑相同的新的圓錐和圓柱各一個(gè),則新的底面半徑為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,a=4,b=5,c=6,則$\frac{sin2A}{sinC}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.曲線(xiàn)C1的極坐標(biāo)方程為ρ(cosθ+sinθ)=-2,曲線(xiàn)C2的參數(shù)方程為$\left\{\begin{array}{l}{x=t^2}\\{y=2\sqrt{2}t}\end{array}\right.$ (t為參數(shù)),則C1與C2交點(diǎn)的直角坐標(biāo)為(2,-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.高三年級(jí)267位學(xué)生參加期末考試,某班37位學(xué)生的語(yǔ)文成績(jī),數(shù)學(xué)成績(jī)與總成績(jī)?cè)谌昙?jí)的排名情況如圖所示,甲、乙、丙為該班三位學(xué)生.
從這次考試成績(jī)看,
①在甲、乙兩人中,其語(yǔ)文成績(jī)名次比其總成績(jī)名次靠前的學(xué)生是乙;
②在語(yǔ)文和數(shù)學(xué)兩個(gè)科目中,丙同學(xué)的成績(jī)名次更靠前的科目是數(shù)學(xué).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.過(guò)三點(diǎn)A(1,3),B(4,2),C(1,-7)的圓交y軸于M,N兩點(diǎn),則|MN|=( 。
A.2$\sqrt{6}$B.8C.4$\sqrt{6}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,三角形△PDC所在的平面與長(zhǎng)方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,點(diǎn)E是CD的中點(diǎn),點(diǎn)F、G分別在線(xiàn)段AB、BC上,且AF=2FB,CG=2GB.
(1)證明:PE⊥FG;
(2)求二面角P-AD-C的正切值;
(3)求直線(xiàn)PA與直線(xiàn)FG所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案