6.已知關(guān)于x的不等式(1+a)x>1的解集為{x|x<$\frac{1}{1+a}$},試求a的取值范圍.

分析 由不等式的解集可得1+a<0,解不等式可得.

解答 解:∵關(guān)于x的不等式(1+a)x>1的解集為{x|x<$\frac{1}{1+a}$},
∴1+a<0,解得a<-1,
即a的取值范圍為(-∞,-1)

點評 本題考查不等式的解法,屬基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),圓O的極坐標方程為ρ=$\sqrt{2}$cos(θ-$\frac{π}{4}$).
(Ⅰ)將直線l與圓O的方程化為直角坐標方程,并證明直線l過定點P($\frac{1}{2}$,1);
(Ⅱ)設直線l與圓O相交于A、B兩點,求證:點P到A、B兩點的距離之積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設x+y=4,且y>0,則$\frac{1}{4|x|}$+$\frac{|x|}{y}$的最小值為$\frac{28}{57}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.命題p:?x∈R,ax2+ax-1≥0,q:$\frac{3}{1-a}$>1,r:(a-m)(a-m-1)>0.
(1)若¬p∧q為假命題,求實數(shù)a的取值范圍;
(2)若¬q是¬r的必要不充分條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.己知數(shù)列{cn}的前n項和為Tn,若數(shù)列{cn}滿足各項均為正項,并且以(cn,Tn)(n∈N*)為坐標的點都在曲線ay=$\frac{a}{2}$x2+$\frac{a}{2}$x+b,(a為非0常數(shù))上運動,則稱數(shù)列{cn}為“拋物數(shù)列”,己知數(shù)列{bn}為“拋物數(shù)列”,則( 。
A.{bn}一定為等比數(shù)列B.{bn}一定為等差數(shù)列
C.從第二項起{bn}一定為等比數(shù)列D.從第二項起{bn}一定為等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知集合A={a|loga$\frac{3}{4}$<1,a>0且a≠1},B={α|sinα+$\sqrt{3}$cosα>1,α∈(0,π)},
(1)求A∩B;
(2)求A∩∁RB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知三個集合A、B、C,則“A⊆B,B⊆C,C⊆A”是“A=B=C”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知數(shù)列{an}滿足$\frac{1}{{a}_{n+1}-4}$=$\frac{{a}_{n}}{4({a}_{n}-4)}$,且a1=8.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設Sn為數(shù)列{$\frac{\sqrt{{a}_{n}}-2}{\sqrt{n+1}}$}的前n項和,證明:Sn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若集合$A=\left\{{x\left|{y=\sqrt{\frac{x}{3-x}},x∈R}\right.}\right\},B=\left\{{x\left|{lg|{2x-3}|<0,x∈R}\right.}\right\}$,則“x∈A”是“x∈B”成立的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案