11.已知集合A={a|loga$\frac{3}{4}$<1,a>0且a≠1},B={α|sinα+$\sqrt{3}$cosα>1,α∈(0,π)},
(1)求A∩B;
(2)求A∩∁RB.

分析 (1)化簡(jiǎn)集合A,B,即可求A∩B;
(2)求出∁RB,即可求A∩∁RB.

解答 解:(1)集合A={a|loga$\frac{3}{4}$<1,a>0且a≠1}=(0,$\frac{3}{4}$)∪(1,+∞);
B={α|sinα+$\sqrt{3}$cosα>1,α∈(0,π)}={α|2sin(α+$\frac{π}{3}$)>1,α∈(0,π)}=(0,$\frac{π}{2}$),
∴A∩B=(0,$\frac{3}{4}$);
(2)∁RB=(-∞,0]∪[$\frac{π}{2}$,+∞),
∴A∩∁RB=(1,+∞).

點(diǎn)評(píng) 本題考查集合的運(yùn)算,考查學(xué)生的計(jì)算能力,正確化簡(jiǎn)集合是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),M為橢圓的下頂點(diǎn),直線MF1交橢圓與另一點(diǎn)N.
(1)若△MF2N的周長(zhǎng)為16,${S}_{{{△MF}_{1}F}_{2}}$:${S}_{{△{NF}_{1}F}_{2}}$=3:1,求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)(3,0)且不垂直于坐標(biāo)軸的直線與橢圓交于A、B兩點(diǎn),已知點(diǎn)C(t,0),當(dāng)t∈(0,1)時(shí),求滿足|AC|=|BC|的直線AB的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)M(x0,y0)是橢圓C:$\frac{{x}^{2}}{4}$+y2=1上一點(diǎn),從原點(diǎn)O向圓M:(x-x02+(y-y02=r2作兩條切線分別與橢圓C交于點(diǎn)P,Q.直線OP,OQ的斜率分別記為k1,k2
(1)若圓M與x軸相切于橢圓C的右焦點(diǎn),求圓M的方程;
(2)若r=$\frac{2\sqrt{5}}{5}$,①求證:k1k2=-$\frac{1}{4}$;②求OP•OQ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知0<β<α<$\frac{π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=$\frac{3}{5}$,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知關(guān)于x的不等式(1+a)x>1的解集為{x|x<$\frac{1}{1+a}$},試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}中,a1=0,an+1=an+2n-1(n∈N*).根據(jù)數(shù)列的首項(xiàng)和遞推公式,寫(xiě)出它的前五項(xiàng)并歸納出通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若圓x2+y2=9與圓x2+y2-4ax-2y+4a2-3=0相切,則實(shí)數(shù)a=0或±$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知一個(gè)等比數(shù)列首項(xiàng)為1,項(xiàng)數(shù)是偶數(shù),其奇數(shù)項(xiàng)之和為85,偶數(shù)項(xiàng)之和為170,則這個(gè)數(shù)列的公比和項(xiàng)數(shù)分別為(  )
A.8,2B.2,4C.4,10D.2,8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(Ⅰ)求和:an+an-1b+…+abn-1+bn(ab≠0);
(Ⅱ)已知an=2n,bn=3n,將數(shù)列{an}的各項(xiàng)依次作為數(shù)列{cn}的奇數(shù)項(xiàng),將數(shù)列b{an}的各項(xiàng)依次作為數(shù)列{cn}的偶數(shù)項(xiàng),求數(shù)列{cn}的通項(xiàng)公式;
(Ⅲ)數(shù)列{an}滿足a1=2,$\sum_{i=1}^n{i{a_i}=4-\frac{n+2}{{{2^{n-1}}}}}$(n≥2),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案