分析 (1)根據(jù)條件列方程解出a1和d,從而得出通項(xiàng)公式;
(2)利用等比數(shù)列的求和公式得出Tn.
解答 解:(1)設(shè){an}的公差為d,
則$\left\{\begin{array}{l}{{a}_{1}+2d=2}\\{7{a}_{1}+21d=21}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=0}\\{d=1}\end{array}\right.$.
∴an=a1+(n-1)d=n-1.
(2)由(1)可得bn=2n-1,∴{bn}為以1為首項(xiàng),以2為公比的等比數(shù)列,
∴Tn=$\frac{1-{2}^{n}}{1-2}$=2n-1.
點(diǎn)評(píng) 本題考查了等差數(shù)列,等比數(shù)列的通項(xiàng)公式與求和公式,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5,(-2,+∞) | B. | -5,(-2,+∞) | C. | 5,(-∞,2) | D. | 5,(-∞,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | 8 | C. | 24 | D. | $\frac{25}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com