【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為2的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD.
(1)求證:平面PAB⊥平面PDC
(2)在線段AB上是否存在一點G,使得二面角C﹣PD﹣G的余弦值為 .若存在,求 的值;若不存在,說明理由.

【答案】
(1)證明:∵AD=2,∴ ,

∴PA2+PD2=AD2∴PD⊥AP,

又∵平面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,

∴AB⊥平面PAD,又PD平面PAD,∴AB⊥PD,

又∵AP∩AP=A,且AP、AB平面PAB,

∴PD⊥平面PAB,

又PD平面PDC,∴平面PAB⊥平面PDC


(2)解:如圖,取AD的中點O,連接OP,OF,

∵PA=PD,∴PO⊥AD.

又側(cè)面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,

∴PO⊥平面ABCD,

而O,F(xiàn)分別為AD,BD的中點,∴OF∥AB,

又ABCD是正方形,∴OF⊥AD,

以O(shè)為原點,射線OA,OF,OP為x軸,y軸,z軸建立空間直角坐標系O﹣xyz,

則有A(1,0,0),C(﹣1,2,0),F(xiàn)(0,1,0),D(﹣1,0,0),P(0,0,1),

若在AB上存在點G,使得二面角C﹣PD﹣G的余弦值為 ,連接PG、DG,

設(shè)G(1,a,0)(0≤a≤2),

=(1,0,1), =(﹣2,﹣a,0),

由(2)知平面PDC的一個法向量為 =(1,0,﹣1),

設(shè)平面PGD的法向量為 =(x,y,z).

,即 ,.

令y=﹣2,得 =(a,﹣2,﹣a),

∴|cos< >|= = ,解得a= ,

∴a= ,此時 ,

∴在線段AB上存在點G(1, ,0)使得二面角C﹣PD﹣G的余弦值為 ,


【解析】(1)推導(dǎo)出PD⊥AP,AB⊥PD,由此能證明平面PAB⊥平面PDC.(2)取AD的中點O,連接OP,OF,PO⊥AD,以O(shè)為原點,射線OA,OF,OP為x軸,y軸,z軸建立空間直角坐標系O﹣xyz,由此利用向量法能求出在線段AB上存在點G(1, ,0)使得二面角C﹣PD﹣G的余弦值為
【考點精析】根據(jù)題目的已知條件,利用平面與平面垂直的判定的相關(guān)知識可以得到問題的答案,需要掌握一個平面過另一個平面的垂線,則這兩個平面垂直.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分10分如圖,在長方體中,,相交于點,點在線段與點不重合

1若異面直線所成角的余弦值為,求的長度;

2,求平面與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】射擊測試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為,命中一次得3分;命中乙靶的概率為,命中一次得2分,若沒有命中則得0分,用隨機變量表示該射手一次測試累計得分,如果的值不低于3分就認為通過測試,立即停止射擊;否則繼續(xù)射擊,但一次測試最多打靶3次,每次射擊的結(jié)果相互獨立。

(1)如果該射手選擇方案1,求其測試結(jié)束后所得分的分布列和數(shù)學期望E

(2)該射手選擇哪種方案通過測試的可能性大?請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了了解學生對周末家庭作業(yè)量的態(tài)度,擬采用分層抽樣的方法分別從高一、高二、高三的高中生中隨機抽取一個容量為200的樣本進行調(diào)查,已知從700名高一、高二學生中共抽取了140名學生,那么該校有高三學生名.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)

已知拋物線的焦點為, 上異于原點的任意一點,過點的直線于另一點,交軸的正半軸于點,且有.當點的橫坐標為時, 為正三角形.

)求的方程;

)若直線,且有且只有一個公共點,

)證明直線過定點,并求出定點坐標;

的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(2sinx,﹣cosx)、B( cosx,2cosx),記f(x)=
(1)若x0是函數(shù)y=f(x)﹣1的零點,求tanx0的值;
(2)求f(x)在區(qū)間[ , ]上的最值及對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若滿足,且在定義域內(nèi)恒成立,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)在定義域上是單調(diào)函數(shù),求實數(shù)的最小值;

(Ⅲ)當時,試比較的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cosωx(sinωx+ cosωx)(ω>0),如果存在實數(shù)x0 , 使得對任意的實數(shù)x,都有f(x0)≤f(x)≤f(x0+2016π)成立,則ω的最小值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】六個面都是平行四邊形的四棱柱稱為平行六面體.已知在平行四邊形ABCD中(如圖1),有AC2+BD2=2(AB2+AD2),則在平行六面體ABCD﹣A1B1C1D1中(如圖2),AC12+BD12+CA12+DB12等于(
A.2(AB2+AD2+AA12
B.3(AB2+AD2+AA12
C.4(AB2+AD2+AA12
D.4(AB2+AD2

查看答案和解析>>

同步練習冊答案