3.已知集合A={1,2},B={x|ax+1=0},且A∪B=A,則a的值組成的集合為{0,-1,-$\frac{1}{2}$}.

分析 根據(jù)A∪B=A得出B⊆A,再根據(jù)空集是任何集合的子集,分兩類討論:①當(dāng)a=0時(shí);②當(dāng)a≠0時(shí).

解答 解:因?yàn)锳∪B=A,所以B⊆A,
由于空集是任何集合的子集,故討論如下:
①當(dāng)a=0時(shí),方程ax+1=0無(wú)解,B=∅,
此時(shí),∅⊆A,符合題意;
②當(dāng)a≠0時(shí),B={-$\frac{1}{a}$},
由于B⊆A,所以-$\frac{1}{a}$=1或2,
解得a=-1或a=-$\frac{1}{2}$,
綜合以上討論得,實(shí)數(shù)a的值構(gòu)成的集合為{0,-1,-$\frac{1}{2}$},
故答案為:{0,-1,-$\frac{1}{2}$}.

點(diǎn)評(píng) 本題主要考查了集合的包含關(guān)系的判斷及應(yīng)用,以及空集的性質(zhì),運(yùn)用了分類討論的解題思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)y=loga(x+1)+2(a>0且a≠1)恒過(guò)定點(diǎn)A,則A的坐標(biāo)為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(sin$\frac{x}{2}$,$\frac{1}{2}$),$\overrightarrow$=($\sqrt{3}$cos$\frac{x}{2}$-sin$\frac{x}{2}$,1),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c.
(1)求f(x)的單調(diào)遞增區(qū)間:
(2)若f(B+C)=1,a=$\sqrt{3}$,b=1.求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=2x-3,g(x+2)=f(x+1),g(x)=2x-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)在(-1,1)上既是奇函數(shù),又是減函數(shù),則滿足f(1-x)+f(3x-2)<0的x的取值范圍是( 。
A.($\frac{1}{2}$,+∞)B.($\frac{1}{2}$,1)C.($\frac{3}{4}$,+∞)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知數(shù)列{an}和{bn}都是等差數(shù)列,若a2+b2=3,a4+b4=5,則a7+b7=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某公司生產(chǎn)一批A產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤(rùn)12萬(wàn)元.該公司通過(guò)設(shè)備升級(jí),生產(chǎn)這批A產(chǎn)品所需原材料減少了x噸,且每噸原材料創(chuàng)造的利潤(rùn)提高0.5x%;若將少用的x噸原材料全部用于生產(chǎn)公司新開(kāi)發(fā)的B產(chǎn)品,每噸原材料創(chuàng)造的利潤(rùn)為12(a-$\frac{13}{1000}$x)萬(wàn)元(a>0).
(Ⅰ)若設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤(rùn)不低于原來(lái)生產(chǎn)該批A產(chǎn)品的利潤(rùn),求x的取值范圍.
(Ⅱ)若生產(chǎn)這批B產(chǎn)品的利潤(rùn)始終不高于設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤(rùn),求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,A、B分別為橢圓C的左頂點(diǎn)、上頂點(diǎn),橢圓C上一動(dòng)點(diǎn)P,三角形PF1F2的面積的最大值為2.在橢圓C上有一點(diǎn)Q,過(guò)Q作x軸的垂線恰好過(guò)左焦點(diǎn)F1,且OQ∥AB,過(guò)點(diǎn)F1的直線l交橢圓于D、E.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求三角形OPQ的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.總體X的均值μ和方差σ2均存在,但是未知,且σ2>0,X1、X2,…,Xn為X的一個(gè)樣本,求μ,σ2的矩估計(jì)量.

查看答案和解析>>

同步練習(xí)冊(cè)答案