12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,A、B分別為橢圓C的左頂點(diǎn)、上頂點(diǎn),橢圓C上一動(dòng)點(diǎn)P,三角形PF1F2的面積的最大值為2.在橢圓C上有一點(diǎn)Q,過(guò)Q作x軸的垂線恰好過(guò)左焦點(diǎn)F1,且OQ∥AB,過(guò)點(diǎn)F1的直線l交橢圓于D、E.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求三角形OPQ的面積的最大值.

分析 (1)${S}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}•2c$•|yP|≤c•b=2.把x=-c代入橢圓方程可得:$\frac{{c}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,解得y.利用OQ∥AB,可得kOQ=kAB,可得b=c,又a2=b2+c2,聯(lián)立解出即可得出.
(2)Q(-$\sqrt{2}$,1),可得|OQ|=$\sqrt{3}$.直線OQ的方程為:y=-$\frac{\sqrt{2}}{2}$x,設(shè)P$(2cosθ,\sqrt{2}sinθ)$,(θ∈[0,2π)).可得點(diǎn)P到直線l的距離d=$\frac{|2cosθ+2sinθ|}{\sqrt{3}}$≤$\frac{2\sqrt{2}}{\sqrt{3}}$,即可得出S△OPQ=$\frac{1}{2}d|OQ|$面積的最大值.

解答 解:(1)${S}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}•2c$•|yP|≤c•b=2,
把x=-c代入橢圓方程可得:$\frac{{c}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,解得y=±$\frac{^{2}}{a}$.
∴kOQ=-$\frac{^{2}}{ac}$,
kAB=-$\frac{a}$.
∵OQ∥AB,
∴kOQ=kAB,∴-$\frac{^{2}}{ac}$=-$\frac{a}$,
化為b=c,
聯(lián)立$\left\{\begin{array}{l}{b=c}\\{bc=2}\end{array}\right.$,解得b=c=$\sqrt{2}$,a2=b2+c2=4.
∴橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1.
(2)Q(-$\sqrt{2}$,1),∴|OQ|=$\sqrt{3}$.
直線OQ的方程為:y=-$\frac{\sqrt{2}}{2}$x,即x+$\sqrt{2}$y=0.
設(shè)P$(2cosθ,\sqrt{2}sinθ)$,(θ∈[0,2π)).
∴點(diǎn)P到直線l的距離d=$\frac{|2cosθ+2sinθ|}{\sqrt{3}}$=$\frac{2\sqrt{2}|sin(θ+\frac{π}{4})|}{\sqrt{3}}$≤$\frac{2\sqrt{2}}{\sqrt{3}}$,當(dāng)$sin(θ+\frac{π}{4})$=±1時(shí)取等號(hào).
∴S△OPQ=$\frac{1}{2}d|OQ|$≤$\frac{1}{2}$×$\frac{2\sqrt{2}}{\sqrt{3}}$×$\sqrt{3}$=$\sqrt{2}$,
∴三角形OPQ的面積的最大值為$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交性質(zhì)、點(diǎn)到直線的距離公式、三角形面積計(jì)算公式、斜率計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)在y軸上,虛軸長(zhǎng)為12,離心率為$\frac{5}{4}$;
(2)頂點(diǎn)間的距離為4,漸近線方程為$y=±\frac{1}{2}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知集合A={1,2},B={x|ax+1=0},且A∪B=A,則a的值組成的集合為{0,-1,-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知定義域?yàn)镽的奇函數(shù)滿足f(x+4)=f(x)+f(2),且x∈(0,2)時(shí),f(x)=lnx,則函數(shù)f(x)在區(qū)間[-4,4]上有9個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)增函數(shù),若f(lgx)>f(1),則實(shí)數(shù)x的取值范圍(0,$\frac{1}{10}$)∪(10,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=2sin(2x+$\frac{π}{6}$)+1+a,x∈[0,$\frac{3π}{4}$]
(1)求單調(diào)遞增區(qū)間;
(2)若方程f(x)=0在[0,$\frac{3π}{4}$]上有兩個(gè)不同的實(shí)根.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=-2sin(3x+$\frac{π}{2}$).
(1)求函數(shù)圖象的對(duì)稱中心和對(duì)稱軸;
(2)寫出函數(shù)的單調(diào)遞減區(qū)間;
(3)此函數(shù)圖象可由函數(shù)y=cosx圖象怎樣變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知$f(\sqrt{x}+1)=x+2\sqrt{x}$,則函數(shù)f(x+1)的解析式為f(x+1)=x2+2x,x≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.兩角和與差的三角函數(shù)公式的理解:
(1)正弦公式概括為sin(α±β)=sinαcosβ±cosαsinβ.
(2)余弦公式概括為cos(α±β)=cosαcosβ$\overline{+}$sinαsinβ.

查看答案和解析>>

同步練習(xí)冊(cè)答案