8.已知函數(shù)f(x)=|x-3|.
(Ⅰ)若不等式f(x-1)+f(x)<a的解集為空集,求實數(shù)a的取值范圍;
(Ⅱ)若|a|<1,|b|<3,且a≠0,判斷$\frac{f(ab)}{|a|}$與$f(\frac{a})$的大小,并說明理由.

分析 (Ⅰ)根據(jù)絕對值的幾何意義求出f(x-1)+f(x)的最小值,從而求出a的范圍;(Ⅱ)根據(jù)分析法證明即可.

解答 解:(Ⅰ)因為f(x-1)+f(x)=|x-4|+|x-3|≥|x-4+3-x|=1,
不等式f(x-1)+f(x)<a的解集為空集,
則1≥a即可,所以實數(shù)a的取值范圍是(-∞,1].…(5分)
(Ⅱ)$\frac{f(ab)}{|a|}>f(\frac{a})$,
證明:要證$\frac{f(ab)}{|a|}>f(\frac{a})$,
只需證|ab-3|>|b-3a|,
即證(ab-3)2>(b-3a)2,
又(ab-3)2-(b-3a)2=a2b2-9a2-b2+9=(a2-1)(b2-9).
因為|a|<1,|b|<3,
所以(ab-3)2-(b-3a)2>0,
所以原不等式成立.…(10分)

點評 本題考查了絕對值的幾何意義,考查不等式的大小比較,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知等比數(shù)列{an}中,各項都是正數(shù),前n項和為Sn,且${a_2},\frac{1}{2}{a_3},{S_2}$成等差數(shù)列,則公比q等于( 。
A.$1+\sqrt{2}$B.$1-\sqrt{2}$C.$3+2\sqrt{2}$D.$3-2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知等差數(shù)列{an}的前n項和為Sn,滿足S5=S9,且a1>0.則Sn中最大的是(  )
A.S6B.S7C.S8D.S15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖,已知四邊形ABCD是圓內(nèi)接四邊形,且∠BCD=120°,AD=2,AB=BC=1,則該四邊形的面積等于( 。
A.$\sqrt{3}$B.$\frac{3\sqrt{3}}{4}$C.$\sqrt{3}$+1D.$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.不等式|x-3|<5的解集是(-2,8).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知l,m,n為三條不同直線,α,β,γ為三個不同平面,則下列判斷正確的是(  )
A.若m∥α,n∥α,則m∥nB.若m⊥α,n∥β,α⊥β,則m⊥n
C.若α∩β=l,m∥α,m∥β,則m∥lD.若α∩β=m,α∩γ=n,l⊥m,l⊥n,則l⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=lnx-ax2,且函數(shù)f(x)在點(2,f(2))處的切線的斜率是$-\frac{3}{2}$,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.從某山區(qū)養(yǎng)殖場散養(yǎng)的3500頭豬中隨機抽取5頭,測量豬的體長x(cm)和體重y(kg),得如下測量數(shù)據(jù):
豬編號12345
x169181166185180
y9510097103101
(1)當且僅當x,y滿足:x≥180且y≥100時,該豬為優(yōu)等品,用上述樣本數(shù)據(jù)估計山區(qū)養(yǎng)殖場散養(yǎng)的3500頭豬中優(yōu)等品的數(shù)量;
(2)從抽取的上述5頭豬中,隨機抽取2頭中優(yōu)等品數(shù)x的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知具有線性相關關系的兩個變量x,y之間的一組數(shù)據(jù)如表:
x01234
y2.24.34.54.86.7
且回歸直線方程為$\widehat{y}$=bx+2.6,根據(jù)模型預報當x=6時,y的預測值為( 。
A.5.76B.6.8C.8.3D.8.46

查看答案和解析>>

同步練習冊答案