10.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足S5=S9,且a1>0.則Sn中最大的是( 。
A.S6B.S7C.S8D.S15

分析 由題意和等差數(shù)列的性質(zhì)可得a7>0,a8<0,由等差數(shù)列的單調(diào)性可得答案.

解答 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S5=S9,
∴S9-S5=a6+a7+a8+a9=2(a7+a8)=0,
結(jié)合a1>0可得a7>0,a8<0,
∴Sn中最大的S7
故選:B.

點(diǎn)評(píng) 本題考查等差數(shù)列的前n項(xiàng)和的最值,得出a7>0,a8<0是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若$a=\int\begin{array}{l}1\\-1\end{array}\sqrt{1-{x^2}}dx$,則${({\frac{a}{π}x-\frac{1}{x}})^6}$的展開(kāi)式中的常數(shù)項(xiàng)( 。
A.$\frac{5}{2}$B.$-\frac{5}{2}$C.20D.-15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知|$\overrightarrow{a}$|=2與|$\overrightarrow$|=4,在下列條件下求$\overrightarrow{a}$•$\overrightarrow$:
(1)$\overrightarrow{a}$∥$\overrightarrow$;
(2)$\overrightarrow{a}$⊥$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知3,a-1,12成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖所示,圓錐SO的母線長(zhǎng)為2cm,底面半徑為$\sqrt{3}$,過(guò)頂點(diǎn)S作截面SAC與底面所成二面角為45°,求:
(1)三棱錐S-AOC的體積;
(2)圓錐SO與三棱錐S-AOC的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知銳角三角形的邊長(zhǎng)分別為2,4,x,則x的取值范圍是( 。
A.(1,$\sqrt{5}$)B.($\sqrt{5}$,$\sqrt{13}$)C.(1,2$\sqrt{5}$)D.(2$\sqrt{3}$,2$\sqrt{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.判斷下列各式的符號(hào):
(1)sinθ•cosθ($\frac{π}{2}$<θ<π);
(2)$\frac{sinθ}{cosθ}$(2π<θ<$\frac{5π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=|x-3|.
(Ⅰ)若不等式f(x-1)+f(x)<a的解集為空集,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若|a|<1,|b|<3,且a≠0,判斷$\frac{f(ab)}{|a|}$與$f(\frac{a})$的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.橢圓E中心在原點(diǎn),以拋物線y2=4x的焦點(diǎn)為其一個(gè)焦點(diǎn),且E經(jīng)點(diǎn)P($\frac{4}{3}$,$\frac{1}{3}$),則橢圓短軸長(zhǎng)為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案