分析 先根據(jù)函數(shù)是定義在R上的偶函數(shù),利用不等式 f(a2-2a+3)>f(a2+a+1),根據(jù)f(x)在R上是減函數(shù),去函數(shù)符號(hào),再解關(guān)于a的二次不等式即可.
解答 解:∵f(x)是R上的偶函數(shù),且在區(qū)間(-∞,0)上是減函數(shù),
∴f(x)在(0,+∞)上是增函數(shù),
又a2-2a+3=(a-1)2+2>0,a2+a+1=(a+$\frac{1}{2}$)2+$\frac{3}{4}$>0,f(a2-2a+3)>f(a2+a+1),
∴a2-2a+3>a2+a+1,即3a<2,
解得a$<\frac{2}{3}$,
∴實(shí)數(shù)a的取值范圍為(-∞,$\frac{2}{3}$).
點(diǎn)評(píng) 本題考查函數(shù)的奇偶性、單調(diào)性及其綜合運(yùn)用,考查抽象不等式的求解,考查轉(zhuǎn)化思想,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$+$\sqrt{2}$ | B. | $\sqrt{6}$+$\sqrt{3}$ | C. | $\sqrt{5}$+$\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 1 | 2 | 3 |
f(x) | 2 | 3 | 1 |
g(x) | 1 | 3 | 2 |
g(f(x)) | |||
f(g(x)) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com