分析 (1)求導(dǎo)f′(x)=1-$\frac{1}{{x}^{2}}$=$\frac{(x+1)(x-1)}{{x}^{2}}$,從而判斷導(dǎo)數(shù)的正負(fù)以確定函數(shù)的單調(diào)性;
(2)由函數(shù)的單調(diào)性確定函數(shù)的最值.
解答 解:(1)證明:∵f(x)=x+$\frac{1}{x}$,
∴f′(x)=1-$\frac{1}{{x}^{2}}$=$\frac{(x+1)(x-1)}{{x}^{2}}$,
∴當(dāng)x∈(0,1)時(shí),f′(x)<0,當(dāng)x∈(1,+∞)時(shí),f′(x)>0,
∴f(x)在區(qū)間(0,1]上是單調(diào)減函數(shù),在區(qū)間[1,+∞)上是單調(diào)增函數(shù);
(2)由(1)知,f(x)有最小值,無(wú)最大值;
fmin(x)=f(1)=1+1=2.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 22 | C. | 25 | D. | 45 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com