20.已知函數(shù)f(x)=x+1g$\frac{x+1}{1-x}$.
(1)判斷并證明函數(shù)f(x)在定義城上的奇偶性;
(2)判斷f(x)的單凋性(不需要證明);
(3)解不等式f(x-1)+f(2-3x)>0.

分析 (1)根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)求出函數(shù)的定義域即可;(2)寫(xiě)出函數(shù)的單調(diào)性即可;(3)根據(jù)函數(shù)的單調(diào)性得到關(guān)于x的不等式組,解出即可.

解答 解:(1)由$\frac{x+1}{1-x}$>0,解得:-1<x<1,
∴函數(shù)f(x)的定義域是(-1,1),
而f(-x)=-x+lg$\frac{-x+1}{1+x}$=-x-lg$\frac{1+x}{1-x}$=-f(x),
∴f(x)在(-1,1)上是奇函數(shù);
(2)f(x)在(-1,1)單調(diào)遞增;
(3)∵f(x-1)+f(2-3x)>0,
∴f(x-1)>f(3x-2),
∵f(x)是增函數(shù),
∴$\left\{\begin{array}{l}{-1<x-1<1}\\{-1<3x-2<1}\\{x-1>3x-2}\end{array}\right.$,
解得:$\frac{1}{3}$<x<$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、奇偶性,考查對(duì)數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某省去年高三200000考生英語(yǔ)聽(tīng)力考試成績(jī)服從正態(tài)分布N(17,9),現(xiàn)從某校高三年級(jí)隨機(jī)抽取50名考生的成績(jī),發(fā)現(xiàn)全部介于[6,30]之間,將成績(jī)按如下方式分成6組:第1組[6,10),第2組[10,14),…,第6組[26,30],如圖是按上述分組方法得到的頻率分布直方圖.
(1)估算該校50名考生成績(jī)的眾數(shù)和中位數(shù);
(2)求這50名考生成績(jī)?cè)赱22,30]內(nèi)的人數(shù);
(3)從這50名考生成績(jī)?cè)赱22,30]內(nèi)的人中任意抽取2人,該2人成績(jī)排名(從高到低)在全省前260名的人數(shù)記為X,求X的數(shù)學(xué)期望.
參考數(shù)據(jù):
若X~N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.6826,
P(μ-2σ<X≤μ+2σ)=0.9544,
P(μ-3σ<X≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)是定義在R上的奇函數(shù),x<0時(shí),f(x)=$\frac{x}{2x-1}$,則f(2)=-$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(Ⅰ)求(-$\frac{1}{2}$)-2+125${\;}^{\frac{2}{3}}$+2lg$\frac{1}{2}$-lg25的值;
(Ⅱ)若|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{2π}{3}$,求$\overrightarrow{a}$•$\overrightarrow$與|$\overrightarrow{a}$+2$\overrightarrow$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知a=lg$\sqrt{e}$,b=lg2e,c=e0.1,則a、b、c的大小順序?yàn)椋ā 。?table class="qanwser">A.a>b>cB.c>b>aC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,-3)
(1)求2$\overrightarrow{a}$,$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{a}•\overrightarrow$;
(2)求|$\overrightarrow{a}$|,|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若復(fù)數(shù)z滿足(1+i)z=2-i,則|z|=$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若直線l的一個(gè)方向向量為(1,1),則l的傾斜角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知冪函數(shù)y=xa的圖象過(guò)點(diǎn)($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),則loga4的值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案