分析 由題意得知b=a+2,c=a+4,∠C=$\frac{2}{3}$π,從而利用余弦定理求得邊長,再由正弦定理求得各邊長,從而求周長即可.
解答 解:由題意得,
b=a+2,c=a+4,∠C=$\frac{2}{3}$π,
∴(a+4)2=a2+(a+2)2-2a(a+2)cos$\frac{2}{3}$π,
解得,a=3或a=-2(舍去),
故a=3,b=5,c=7,
∵$\frac{A′B′}{sin\frac{π}{3}}$=$\frac{A′C}{sinθ}$=$\frac{B′C}{sin(\frac{π}{3}-θ)}$,
∴A′C=$\frac{14\sqrt{3}}{3}$sinθ,B′C=$\frac{14\sqrt{3}}{3}$sin($\frac{π}{3}$-θ),
∴△A′CB′周長l=7+$\frac{14\sqrt{3}}{3}$sinθ+$\frac{14\sqrt{3}}{3}$sin($\frac{π}{3}$-θ)
=7+$\frac{14\sqrt{3}}{3}$•2•sin$\frac{π}{6}$cos(θ-$\frac{π}{6}$),
故當(dāng)θ=$\frac{π}{6}$時(shí)有最大值為
7+$\frac{14\sqrt{3}}{3}$•2•$\frac{1}{2}$=7+$\frac{14\sqrt{3}}{3}$;
故答案為:7+$\frac{14\sqrt{3}}{3}$.
點(diǎn)評 本題考查了解三角形的應(yīng)用及三角函數(shù)的化簡運(yùn)算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0≤x≤3} | B. | {1,2} | C. | {0,1,2} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 15 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com