20.“輾轉(zhuǎn)相除法”的算法思路如圖所示,記R(a\b)為a除以b所得的余數(shù)(a,b∈N*),執(zhí)行如圖的程序框圖,若輸入a,b分別為405,75,則輸出b的值為(  )
A.3B.5C.15D.25

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量b的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:當(dāng)a=405,b=75時(shí),y=30,不滿足退出循環(huán)的條件,故a=75,b=30,
當(dāng)a=75,b=30時(shí),y=15,不滿足退出循環(huán)的條件,故a=30,b=15,
當(dāng)a=30,b=15時(shí),y=0,滿足退出循環(huán)的條件,
故輸出的b值為15,
故選:C

點(diǎn)評 本題考查的知識點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用模擬循環(huán)的方法解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在三棱柱FPE-ACB中,AC=BC=2,∠ACB=90°.△PAB為等邊三角形,PC⊥BC.
(I)求證:平面PBC⊥平面ABC;
(Ⅱ)求二面角B-AP-C的正弦值;并求三棱錐p-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.$\underset{lim}{x→∞}$($\frac{x+3}{x+1}$)2x+2的值為e4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且sinA=$\frac{\sqrt{10}}{10}$,sinB=$\frac{\sqrt{5}}{5}$,C為鈍角.
(Ⅰ)求A+B的值;
(Ⅱ)若bc=$\sqrt{10}$,求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知等比數(shù)列{an}的第一項(xiàng)是$\frac{9}{8}$,最后一項(xiàng)是$\frac{1}{3}$.且各項(xiàng)的和是$\frac{65}{24}$.
求:(1)這個(gè)等比數(shù)列的公比q;
(2)這個(gè)等比數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知P是△ABC內(nèi)一點(diǎn),$\overrightarrow{PB}$+$\overrightarrow{PC}$+4$\overrightarrow{PA}$=$\overrightarrow{0}$,現(xiàn)將一粒黃豆撒在△ABC內(nèi),則黃豆落在△PBC內(nèi)的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合U={x∈N*|x≤6},S={1,4,5},T={2,3,4},則S∩(∁UT)=( 。
A.{1,4,5,6}B.{1,5}C.{1,4}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,角A、B、C所對的邊分別是a、b、c.若∠C=$\frac{2}{3}$π,a、b、c依次成等差數(shù)列,且公差為2,如圖.A′B′分別在射線CA,CB上運(yùn)動(dòng),且滿足A′B′=AB,設(shè)∠A′B′C′=θ,則△A′CB′周長最大值為7+$\frac{14\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.“k=1”是“函數(shù)$f(x)=\frac{{k-{e^x}}}{{1+k{e^x}}}$(k為常數(shù))在定義域上是奇函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案