已知a>0,f(logax)=
a
a2-1
(x-x-1).
(1)求f(x)的解析式;
(2)判斷f(x)的奇偶性與單調(diào)性;
(3)對(duì)于f(x),當(dāng)x∈(-1,1)時(shí),f(1-m)+f(1-2m)<0恒成立,求實(shí)數(shù)m的取值范圍.
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)解析式的求解及常用方法,函數(shù)單調(diào)性的判斷與證明,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)換元法:令t=logax,則x=at,代入函數(shù)式可得解析式,利用奇偶函數(shù)的定義可判斷;
(2)利用函數(shù)的奇偶性的定義進(jìn)行判斷,分a>1和0<a<1兩種情況進(jìn)行討論,利用指數(shù)函數(shù)的單調(diào)性可作出判斷;
(3)利用函數(shù)的單調(diào)性和奇偶性進(jìn)行求解.
解答: (本題13分)解:(1)令logax=t則x=at,
∴f(t)=
a
a2-1
(at-a-t)
,
∴f(x)=
a
a2-1
(ax-a-t)
;
(2)∵f(-x)=
a
a2-1
(a-x-ax)
=-f(x),
∴f(x)為奇函數(shù);
當(dāng)a>1時(shí),a-x遞減,-a-x遞增,ax遞增,所以ax-a-x遞增,
a
a2-1
>0,所以f(x)在R上遞增;
當(dāng)0<a<1時(shí),a-x遞增,-a-x遞減,且ax遞減,所以ax-a-x遞減,
a
a2-1
<0,故此時(shí)f(x)遞增;
綜上,當(dāng)a>0且a≠1時(shí),f(x)在R上遞增.
(3)f(1-m)+f(1-2m)<0,
∴f(1-m)<-f(1-2m),
∵f(x)為奇函數(shù),且是增函數(shù)
∴f(1-m)<(2m-1)
1-m<2m-1
-1<1-m<1
-1<2m-1<1
,
解得:
2
3
<m<1
點(diǎn)評(píng):本題考查函數(shù)奇偶性、單調(diào)性的判斷,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=1,a2=2,記
AnAn+1
=(an,an+1)(n∈N*),且
A1A2
AnAn+1
對(duì)任意n∈N*恒成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在等差數(shù)列{bn},使得a1b1+a2b2+…+anbn=(2n-3)2n+3對(duì)任意n∈N*都成立?若存在,求出數(shù)列{bn}的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解某社區(qū)家庭的月均用水量(單位:噸),現(xiàn)從該社區(qū)隨機(jī)抽查100戶,獲得每戶某年的月均用水量,并制作了頻率分布表和頻率分布直方圖(如圖).
(1)分別求出頻率分布表中a、b的值;
(2)設(shè)A1、A2、A3是戶月均用水量為[0,2)的居民代表,B1、B2是戶月均用水量為[2,4]的居民代表.現(xiàn)從這五位居民代表中任選兩人參加水價(jià)論證會(huì),請(qǐng)列舉出所有不同的選法,并求居民代表B1、B2至少有一人被選中的概率.
分組頻數(shù)頻率
[0,0.5)50.05
[0.5,1)80.08
[1,1.5)220.22
[1.5,2)a
[2,2.5)200.20
[2.5,3)120.12
[3,3.5)b
[3.5,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-2|x|,(-3≤x≤3);
(1)證明:f(x)是偶函數(shù);
(2)畫出此函數(shù)的圖象,并指出函數(shù)的單調(diào)區(qū)間;
(3)求此函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1-x
-
1+x

(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在定義域內(nèi)是增函數(shù)還是減函數(shù)?請(qǐng)說(shuō)明理由;
(3)已知a>0,a≠1,解關(guān)于x不等式:f[loga(2x+1)]+2cos
12
<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四面體PABC中,點(diǎn)D,E,F(xiàn),G分別是棱AP,AC,BC,PB的中點(diǎn).
求證:DE∥平面BCP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+cosα=-
1
5
,α∈(0,π),分別求下列各式的值:
(1)tanα;
(2)
sinαcosα
sin2α-sinαcosα-2cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A、B、C對(duì)邊分別是a、b、c,已知c=2,C=
π
3

(1)求△ABC的面積S的最大值;
(2)若sinC+sin(B-A)=sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=x2+2x-5的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過(guò)這三個(gè)交點(diǎn)的圓記為C,求圓C方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案