分析 (Ⅰ)由條件利用同角三角函數(shù)的基本關(guān)系,求得sinθ的值.
(Ⅱ)由條件利用二倍角的余弦公式,求得cos2θ的值.
(Ⅲ)由條件求得cos(θ-φ)的值,再根據(jù)cosϕ=cos[θ-(θ-ϕ)]=cosθcos(θ-ϕ)+sinθsin(θ-ϕ),計算求的結(jié)果.
解答 解:(Ⅰ)由cosθ=$\frac{{\sqrt{5}}}{5}$,θ∈(0,$\frac{π}{2}$),可得$sinθ=\sqrt{1-{{cos}^2}θ}=\frac{{2\sqrt{5}}}{5}$.
(Ⅱ)$cos2θ=2{cos^2}θ-1=2×\frac{1}{5}-1=-\frac{3}{5}$.
(Ⅲ)∵$0<θ<\frac{π}{2}$,$0<ϕ<\frac{π}{2}$,∴$-\frac{π}{2}<θ-ϕ<\frac{π}{2}$,結(jié)合 $sin({θ-ϕ})=\frac{{\sqrt{10}}}{10}$,
∴$cos({θ-ϕ})=\frac{{3\sqrt{10}}}{10}$,
∴cosϕ=cos[θ-(θ-ϕ)]=cosθcos(θ-ϕ)+sinθsin(θ-ϕ)=$\frac{{\sqrt{5}}}{5}×\frac{{3\sqrt{10}}}{10}+\frac{{2\sqrt{5}}}{5}×\frac{{\sqrt{10}}}{10}$=$\frac{{\sqrt{2}}}{2}$.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,兩角和差的余弦公式,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
有數(shù)字 | 無數(shù)字 | 合計 | |
中國人 | |||
外國人 | |||
合計 |
P(K2=k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 3.5 | C. | 4 | D. | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 同側(cè) | B. | (2,3)在直線上 | C. | 異側(cè) | D. | 以上都不對 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com