16.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-4,0),$\overrightarrow{c}$=(-1,-2),則-2$\overrightarrow{a}$+$\overrightarrow$-3$\overrightarrow{c}$=(1,4).

分析 根據(jù)平面向量的坐標(biāo)運(yùn)算法則,進(jìn)行計(jì)算即可.

解答 解:∵向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-4,0),$\overrightarrow{c}$=(-1,-2),
∴-2$\overrightarrow{a}$+$\overrightarrow$-3$\overrightarrow{c}$=(-2×2-4-3×(-3),-2×1+0-3×(-2))=(1,4).
故答案為:(1,4).

點(diǎn)評 本題考查了平面向量的坐標(biāo)運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x∈Z|x2-7x+10≤0},B={x|$\frac{1}{1-x}$∈A},則A,B中的所有元素之積為( 。
A.2B.6C.24D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}滿足a1=$\frac{3}{8}$,若$\frac{{a}_{n+6}-{a}_{n}}{91}$≥3n≥an+2-an,則a2017=$\frac{1}{8}$•32017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}中,a1=-$\frac{5}{12}$,nan+1=(n+1)an+$\frac{n}{n+3}$,則該數(shù)列的通項(xiàng)an=-$\frac{n(2n+3)}{2(n+1)(n+2)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=e${\;}^{cos{x}^{2}}$,求dy.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知拋物線C1:y2=2px(p>0)上一點(diǎn)P到其焦點(diǎn)F的距離為$\frac{3}{2}$,以P為原點(diǎn)且與拋物線準(zhǔn)線l相切的圓恰好過原點(diǎn)O.
(1)求拋物線C1的方程;
(2)設(shè)點(diǎn)A(a,0)(a>2),圓C2的圓心T是曲線C1上的動(dòng)點(diǎn),圓C2與y軸交于M、N兩點(diǎn),且|MN|=4,若點(diǎn)A到點(diǎn)T的最短距離為a-1,試判斷直線l與圓C2的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若A,B是雙曲線x2-$\frac{{y}^{2}}{3}$=1上兩個(gè)動(dòng)點(diǎn),且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,則△AOB面積的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知定義在R上的函數(shù)f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函數(shù)
(Ⅰ)求a,b的值;
(Ⅱ)若對任意的t∈[-1,2],不等式f(2t2+1)<f(kt)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若雙曲線的方程為4x2-9y2=36,則其實(shí)軸長為6.

查看答案和解析>>

同步練習(xí)冊答案