分析 在等式的兩邊同時(shí)除以n(n+1),得$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=$\frac{1}{2}$($\frac{1}{n+1}$-$\frac{1}{n+3}$),然后利用累加法求數(shù)列的通項(xiàng)公式即可.
解答 解:∵nan+1=(n+1)an+$\frac{n}{n+3}$,
∴在等式的兩邊同時(shí)除以n(n+1),得$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=$\frac{1}{2}$($\frac{1}{n+1}$-$\frac{1}{n+3}$),
所以$\frac{{a}_{n}}{n}$=a1+$\frac{1}{2}$[($\frac{1}{n}$-$\frac{1}{n+2}$)+($\frac{1}{n-1}$-$\frac{1}{n+1}$)+…+($\frac{1}{2}$-$\frac{1}{4}$)]=-$\frac{5}{12}$+$\frac{1}{2}$($\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{n+2}$-$\frac{1}{n+1}$),
所以an=-$\frac{n(2n+3)}{2(n+1)(n+2)}$,
故答案為:-$\frac{n(2n+3)}{2(n+1)(n+2)}$.
點(diǎn)評(píng) 本題主要考查利用累加法求數(shù)列的通項(xiàng)公式,以及利用裂項(xiàng)法求數(shù)列的和,要使熟練掌握這些變形技巧.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $3\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | 20 | C. | $2\sqrt{3}$ | D. | $2\sqrt{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com