6.已知集合A={x∈Z|x2-7x+10≤0},B={x|$\frac{1}{1-x}$∈A},則A,B中的所有元素之積為( 。
A.2B.6C.24D.120

分析 根據(jù)集合A的表示便可求出A={2,3,4,5},而由$\frac{1}{1-x}∈A$便可讓$\frac{1}{1-x}$分別等于2,3,4,5,然后解出對(duì)應(yīng)的x值,即得出集合B的所有元素,這樣便可求出A,B中所有元素的積.

解答 解:解x2-7x+10≤0得,2≤x≤5;
∴A={2,3,4,5};
∵$\frac{1}{1-x}∈A$;
∴$\frac{1}{1-x}=2$時(shí),x=$\frac{1}{2}$;$\frac{1}{1-x}=3$時(shí),x=$\frac{2}{3}$;$\frac{1}{1-x}=4$時(shí),x=$\frac{3}{4}$;$\frac{1}{1-x}=5$時(shí),$x=\frac{4}{5}$;
∴$B=\{\frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{4}{5}\}$;
∴A,B中所有元素之積為$2×\frac{1}{2}×3×\frac{2}{3}×4×\frac{3}{4}×5×\frac{4}{5}=24$.
故選C.

點(diǎn)評(píng) 考查一元二次不等式的解法,描述法和列舉法表示集合,以及元素與集合的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知ω>0,函數(shù)f(x)=$\frac{\sqrt{2}}{2}$(sinωx+cosωx)在($\frac{π}{2}$,π)上單調(diào)遞減,則實(shí)數(shù)ω的取值范圍是( 。
A.[$\frac{1}{2}$,$\frac{5}{4}$]B.[$\frac{1}{2}$,$\frac{3}{4}$]C.(0,$\frac{1}{2}$]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a4=5,S9=54.
(1)求數(shù)列{an}的通項(xiàng)公式與Sn;
(2)若bn=$\frac{1}{{{S_n}-2n}}$,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知在(1+x)3+(1十x)4+…+(1+x)n(n∈N*)的展開式中.
(1)求含x2項(xiàng)的系數(shù);
(2)利用${C}_{n}^{2}$=$\frac{n(n-1)}{2}$,求12+22+32+…+n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1an=2an+1-1,令bn=an-1.
(1)求證:數(shù)列{$\frac{1}{_{n}}$}為等差數(shù)列;
(2)設(shè)cn=$\frac{{a}_{n+1}}{{a}_{n}}$,求證:數(shù)列{cn}的前n項(xiàng)和Tn<n+$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)y=$\sqrt{(2+x)(3-x)}$和y=lg(kx2+4x+k+3)的定義域分別為A,B,B⊆A時(shí),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)定義在R上的奇函數(shù)y=f(x),當(dāng)x>0時(shí),f(x)=2x-4,則不等式f(x)≤0的解集是(-∞,-2]∪[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=$\overrightarrow{a}$•$\overrightarrow$=2,($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=0,則$\overrightarrow{c}•\overrightarrow{a}$的最大值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-4,0),$\overrightarrow{c}$=(-1,-2),則-2$\overrightarrow{a}$+$\overrightarrow$-3$\overrightarrow{c}$=(1,4).

查看答案和解析>>

同步練習(xí)冊(cè)答案