【題目】在直角坐標(biāo)系xOy中,曲線 (t為參數(shù),t∈R),曲線 (θ為參數(shù),θ∈[0,2π]).
(Ⅰ)以O(shè)為極點(diǎn),x軸正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,求曲線C2的極坐標(biāo)方程;
(Ⅱ)若曲線C1與曲線C2相交于點(diǎn)A、B,求|AB|.
【答案】解(Ⅰ)由 消去參數(shù)后得到其普通方程為x2﹣4x+y2=0,
把x=ρcosθ,y=ρsinθ代入可得ρ=4cosθ.
∴曲線C2的極坐標(biāo)方程為ρ=4cosθ.
(Ⅱ)由 消去參數(shù)后得到其普通方程為x+y﹣3=0,
由曲線C2可知:以(2,0)為圓心,以2為半徑的圓.
那么:圓心到直線C1的距離為 ,
∴弦長(zhǎng) .
解法2:把 代入x2﹣4x+y2=0得8t2﹣12t+1=0,
則有: , ,
則 ,
根據(jù)直線方程的參數(shù)幾何意義知
【解析】(Ⅰ)消去參數(shù)后得到其普通方程,把x=ρcosθ,y=ρsinθ代入可得曲線C2的極坐標(biāo)方程;(Ⅱ)法一:利用弦長(zhǎng)公式直接求解,利用參數(shù)的幾何意義求解.法二、運(yùn)用直線的參數(shù)方程求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額的商品后即可抽獎(jiǎng).抽獎(jiǎng)方法是:從裝有2個(gè)紅球A1 ,A2和1個(gè)白球B的甲箱與裝有2個(gè)紅球a1 ,a2和2個(gè)白球b1,b2的乙箱中,各隨機(jī)摸出1個(gè)球.若摸出的2個(gè)球都是紅球則中獎(jiǎng),否則不中獎(jiǎng).
(1)用球的標(biāo)號(hào)列出所有可能的摸出結(jié)果;
(2)有人認(rèn)為:兩個(gè)箱子中的紅球比白球多,所以中獎(jiǎng)的概率大于不中獎(jiǎng)的概率.你認(rèn)為正確嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)設(shè),計(jì)算的導(dǎo)數(shù).
【答案】(1).(2).
【解析】試題分析:(1)由導(dǎo)數(shù)的基本定義就出斜率,根據(jù)點(diǎn)斜式寫出切線方程;(2), .
試題解析:
(1),則,
又,∴所求切線方程為,即.
(2), .
【題型】解答題
【結(jié)束】
18
【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
(1)求出表中及圖中的值;
(2)若該校高一學(xué)生有800人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件求圓的方程.
(), , ,三角形的外接圓.
()圓心在直線上,且與直線相切于點(diǎn).
()與軸相切,圓心在直線上,且被直線截得的弦長(zhǎng)為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑為1的動(dòng)圓與定圓(x-5)2+(y+7)2=16相切,則動(dòng)圓圓心的軌跡方程是( )
A. (x-5)2+(y+7)2=25
B. (x-5)2+(y+7)2=3或(x-5)2+(y+7)2=15
C. (x-5)2+(y+7)2=9
D. (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過坐標(biāo)原點(diǎn),圓的方程為.
(1)當(dāng)直線的斜率為時(shí),求與圓相交所得的弦長(zhǎng);
(2)設(shè)直線與圓交于兩點(diǎn),且為的中點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市電力公司為了制定節(jié)電方案,需要了解居民用電情況.通過隨機(jī)抽樣,電力公司獲得了50戶居民的月平均用電量,分為六組制出頻率分布表和頻率分布直方圖(如圖所示).
(1)求a,b的值;
(2)為了解用電量較大的用戶用電情況,在第5、6兩組用分層抽樣的方法選取5戶 .
①求第5、6兩組各取多少戶?
②若再?gòu)倪@5戶中隨機(jī)選出2戶進(jìn)行入戶了解用電情況,求這2戶中至少有一戶月平均用電量在[1000,1200]范圍內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C= ,求二面角B﹣AC﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+c與x軸交于A、B兩點(diǎn),頂點(diǎn)為C,點(diǎn)P在拋物線上,且位于x軸下方.
(1)如下圖,若P(1,-3)、B(4,0),① 求該拋物線的解析式;② 若D是拋物線上一點(diǎn),滿足∠DPO=∠POB,求點(diǎn)D的坐標(biāo);
(2) 如下圖,在圖中的拋物線解析式不變的條件下,已知直線PA、PB與y軸分別交于E、F兩點(diǎn).當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),OE+OF是否為定值?若是,試求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com