【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎.抽獎方法是:從裝有2個紅球A1 ,A2和1個白球B的甲箱與裝有2個紅球a1 ,a2和2個白球b1,b2的乙箱中,各隨機摸出1個球.若摸出的2個球都是紅球則中獎,否則不中獎.

(1)用球的標(biāo)號列出所有可能的摸出結(jié)果;

(2)有人認(rèn)為:兩個箱子中的紅球比白球多,所以中獎的概率大于不中獎的概率.你認(rèn)為正確嗎?請說明理由.

【答案】(1)見解析; (2)不正確.

【解析】

(1)中獎利用枚舉法列出所有可能的摸出結(jié)果;

(2)在(1)中求出摸出的2個球都是紅球的結(jié)果數(shù),然后利用古典概型概率計算公式求得概率,并說明中獎的概率大于不中獎的概率是錯誤的.

(1)所有可能的摸出結(jié)果是:{A1,a1},{A1,a2},{A1,b1},{A1,b2},{A2,a1},{A2,a2},{A2,b1},{A2,b2},{B,a1},{B,a2},{B,b1},{B,b2}.

(2)不正確.理由如下:

由(1)知,所有可能的摸出結(jié)果共12種,其中摸出的2個球都是紅球的結(jié)果為{A1,a1},{A1,a2},{A2,a1},{A2,a2},共4種,所以中獎的概率為,不中獎的概率為1->,

故這種說法不正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某種農(nóng)作物在特定溫度下要求最高溫度滿足:的生長狀況,某農(nóng)學(xué)家需要在十月份去某地進行為期十天的連續(xù)觀察試驗現(xiàn)有關(guān)于該地區(qū)10月份歷年10月份日平均最高溫度和日平均最低溫度單位:的記錄如下:

根據(jù)本次試驗?zāi)康暮驮囼炛芷?/span>,寫出農(nóng)學(xué)家觀察試驗的起始日期

設(shè)該地區(qū)今年10月上旬101日至1010的最高溫度的方差和最低溫度的方差分別為,估計的大?直接寫出結(jié)論即可

10月份31天中隨機選擇連續(xù)三天,求所選3天每天日平均最高溫度值[27,30]之間的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】遂寧市觀音湖港口船舶?康姆桨甘窍鹊较韧#

(1)若甲乙兩艘船同時到達(dá)港口,雙方約定各派一名代表從1,2,3,4,5中各隨機選一個數(shù)(甲、乙選取的數(shù)互不影響),若兩數(shù)之和為偶數(shù),則甲先停靠;若兩數(shù)之和為奇數(shù),則乙先停靠,這種規(guī)則是否公平?請說明理由.

(2)根據(jù)以往經(jīng)驗,甲船將于早上7:00~8:00到達(dá),乙船將于早上7:30~8:30到達(dá),請求出甲船先?康母怕

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的離心率是,點在短軸上,且

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面ADNM⊥平面ABCD,四邊形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中點.
(1)求證:平面DEM⊥平面ABM;
(2)在線段AM上是否存在點P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓的中心為原點,長軸在軸上,上頂點為,左、右焦點分別為,線段的中點分別為,且是面積為的直角三角形.

(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;

(2)過作直線交橢圓于兩點,使,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在使得成立.

(1)函數(shù)是否屬于集合M?說明理由;

(2)設(shè)函數(shù),求的取值范圍;

(3)已知函數(shù)圖象與函數(shù)的圖象有交點,根據(jù)該結(jié)論證明:函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓E: (a>b>0)的左右焦點分別為F1、F2 , D為橢圓短軸上的一個頂點,DF1的延長線與橢圓相交于G.△DGF2的周長為8,|DF1|=3|GF1|.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過橢圓E的左頂點A作橢圓E的兩條互相垂直的弦AB、AC,試問直線BC是否恒過定點?若是,求出此定點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線 (t為參數(shù),t∈R),曲線 (θ為參數(shù),θ∈[0,2π]).
(Ⅰ)以O(shè)為極點,x軸正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,求曲線C2的極坐標(biāo)方程;
(Ⅱ)若曲線C1與曲線C2相交于點A、B,求|AB|.

查看答案和解析>>

同步練習(xí)冊答案