6.由函數(shù)y=ex的圖象與y=-2x,x=1,x=3所圍成的封閉面積為e3+8-e.

分析 先確定交點(diǎn)坐標(biāo),可得積分區(qū)間,再利用定積分求面積即可.

解答 解:由題意作圖象,從而結(jié)合圖象可知:函數(shù)y=ex的圖象與y=-2x,x=1,x=3所圍成的封閉面積S=${∫}_{1}^{3}$(ex+2x)dx,
∴S=${∫}_{1}^{3}$(ex+2x)dx=(ex+x2)${丨}_{1}^{3}$=e3+8-e,
故答案為:e3+8-e.

點(diǎn)評 本題考查利用定積分求面積,解題的關(guān)鍵是確定積分區(qū)間與被積函數(shù),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π,cos(α+$\frac{π}{4}$)=$\frac{1}{3}$,sin($\frac{β}{2}$+$\frac{π}{4}$)=$\frac{{\sqrt{3}}}{3}$,則cos(α-$\frac{β}{2}$)=( 。
A.-$\frac{{\sqrt{6}}}{9}$B.$\frac{{\sqrt{6}}}{9}$C.-$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在等差數(shù)列{an}中,a1=2,d=3,則a6=17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知隨機(jī)變量X的分布列為P(X=k)=$\frac{1}{3}$,k=3,6,9.則D(X)等于( 。
A.6B.9C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.有甲、乙兩個建材廠,都想投標(biāo)參加某重點(diǎn)建設(shè),為了對重點(diǎn)建設(shè)負(fù)責(zé),政府到兩建材廠抽樣檢查,他們從中各取等量的樣品檢查它們的抗拉強(qiáng)度指數(shù)如下:
X110120125130135.2
P0.10.20.40.10.2
Y100115125130145
P0.10.20.40.10.2
其中X和Y分別表示甲、乙兩廠材料的抗拉強(qiáng)度,在使用時要求抗拉強(qiáng)度不低于120,比較甲、乙兩廠材料哪一種穩(wěn)定性較好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)隨機(jī)變量X~B(2,p),Y~B(4,p),若P(X≥1)=$\frac{5}{9}$,則P(Y≥1)為( 。
A.$\frac{1}{2}$B.$\frac{16}{81}$C.$\frac{65}{81}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列結(jié)論能成立的是(  )
A.tanα=2且$\frac{cosα}{sinα}$=-$\frac{1}{2}$B.tanα=1且cosα=-$\frac{{\sqrt{2}}}{2}$
C.sinα=1且tanα•cosα=$\frac{1}{2}$D.sinα=$\frac{1}{2}$且cosα=$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,若∠B為鈍角,則sinB-sinA的值(  )
A.大于零B.小于零C.等于零D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在等比數(shù)列{an}中,各項(xiàng)都是正數(shù),且a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則$\frac{{{a_{11}}+{a_{12}}}}{{{a_9}+{a_{10}}}}$=(  )
A.1+$\sqrt{2}$B.$\sqrt{2}$-1C.3+2$\sqrt{2}$D.3-2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案