1.有甲、乙兩個建材廠,都想投標參加某重點建設,為了對重點建設負責,政府到兩建材廠抽樣檢查,他們從中各取等量的樣品檢查它們的抗拉強度指數(shù)如下:
X110120125130135.2
P0.10.20.40.10.2
Y100115125130145
P0.10.20.40.10.2
其中X和Y分別表示甲、乙兩廠材料的抗拉強度,在使用時要求抗拉強度不低于120,比較甲、乙兩廠材料哪一種穩(wěn)定性較好.

分析 先分別求出甲、乙兩廠材料的抗拉強度的數(shù)學期望和方差,由此能求出甲廠材料穩(wěn)定性較好.

解答 解:E(X)=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125,
E(Y)=100×0.1+115×0.2+125×0.4+130×0.1+145×0.2=125,
D(X)=0.1×(110-125)2+0.2×(120-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(135-125)2=50,
D(X)=0.1×(100-125)2+0.2×(115-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(145-125)2=165,
∵E(X)=E(Y),且D(X)<D(Y),
∴甲廠材料穩(wěn)定性較好.

點評 本題考查離散型隨機變量的數(shù)學期望、方差的性質及應用,是中檔題,解題時要認真審題,注意離散型隨機變量的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知各項均為正數(shù)的數(shù)列{an}滿足log2an-log2an-1=1n∈N*,n≥2,且a4=16.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{bn}滿足bn=$\frac{{na_n^{\;}}}{{(2n+1)•{2^n}}}$,是否存在正整數(shù)m,n(1<m<n),使得b1,bm,bn成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請說明理由.
(Ⅲ)令cn=$\frac{2n+4}{{n(n+1){a_n}}}$,記數(shù)列{cn}的前n項和為Sn,其中n∈N*,證明:$\frac{3}{2}$≤Sn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知漸近線方程為y=±$\frac{2}{3}$x且經(jīng)過P(${\sqrt{6}$,2),求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知直線l:y=$\frac{1}{2}$x和兩定點A(1,1)、B(2,2),在直線l上取一點P,使PA2+PB2最小,試求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知X的分布列為
 X-1 
 P $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{6}$
求:(1)E(X),D(X);
(2)設Y=2X+3,求E(Y),D(Y).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.由函數(shù)y=ex的圖象與y=-2x,x=1,x=3所圍成的封閉面積為e3+8-e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知點A(x1,y1),D(x2,y2)(其中x1<x2)是曲線y2=4x(y≥0)上的兩點,A,D兩點在x軸上的射影分別為點B,C,且|BC|=2.
(Ⅰ)當點B的坐標為(1,0)時,求直線AD的斜率;
(Ⅱ)記△OAD的面積為S1,梯形ABCD的面積為S2,求證:$\frac{S_1}{S_2}$<$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.某醫(yī)學院將6名大學生分配到某醫(yī)院的3個科室實習,每個科室至少1人,則不同的分配方案的種數(shù)是( 。
A.360B.90C.540D.2160

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知復數(shù)z的共軛復數(shù)為$\overline{z}$,且$\frac{\overline{z}}{1+i}$=2+i,則復數(shù)z=1-3i.

查看答案和解析>>

同步練習冊答案