如圖,圓與坐標軸交于點.
⑴求與直線垂直的圓的切線方程;
⑵設點是圓上任意一點(不在坐標軸上),直線交軸于點,直線交直線于點,
①若點坐標為,求弦的長;②求證:為定值.
(1),(2)①:2,②:證明略.
解析試題分析:(1)所求直線與垂直,則斜率為負倒數(shù)關系,因此可依方程設出所求直線方程,利用圓心到此直線的距離為半徑可求出此直線方程;(2)①為?键c,利用弦心距,半徑,弦長的一半三者構成勾股定理的關系求解;②設直線的方程為:,把轉化為含的代數(shù)式進行運算,也可設,把轉化為含的代數(shù)式進行運算.
試題解析:,直線,⑴設所求切線方程為:,則,所以:;
⑵①:,圓心到直線的距離,所以弦的長為;(或由等邊三角形亦可).
②解法一:設直線的方程為:存在,,則
由,得,所以或,將代入直線,得,即,則,:,,,得,所以為定值.
解法二:設,則,直線,則,,直線,又,與交點,,將,代入得,所以,得為定值.
考點:點到線的距離公式,直線的點斜式,斜截式方程,直線與圓相交問題,化歸與轉化思想
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知圓心坐標為的圓與軸及直線均相切,切點分別為、,另一圓與圓、軸及直線均相切,切點分別為、。
(1)求圓和圓的方程;
(2)過點作的平行線,求直線被圓截得的弦的長度;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓A:x2+y2-2x-2y-2=0.
(1)若直線l:ax+by-4=0平分圓A的周長,求原點O到直線l的距離的最大值;
(2)若圓B平分圓A的周長,圓心B在直線y=2x上,求符合條件且半徑最小的圓B的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓C的方程為,過點M(2,4)作圓C的兩條切線,切點分別為A,B,
直線AB恰好經過橢圓T:(a>b>0)的右頂點和上頂點.
(1)求橢圓T的方程;
(2)已知直線l:y=kx+(k>0)與橢圓T相交于P,Q兩點,O為坐標原點,
求△OPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知半徑為5的圓的圓心在軸上,圓心的橫坐標是整數(shù),且與直線相切.
求:(1)求圓的方程;
(2)設直線與圓相交于兩點,求實數(shù)的取值范圍;
(3)在(2)的條件下,是否存在實數(shù),使得過點的直線垂直平分弦?
若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com