【題目】已知橢圓的離心率為,點(diǎn)在橢圓

)求的方程.

)設(shè)直線不經(jīng)過點(diǎn)且與相交于兩點(diǎn),若直線與直線的斜率的和為,

證明: 過定點(diǎn).

【答案】.(見解析.

【解析】試題分析:1由題意, ,結(jié)合,可得橢圓方程

2設(shè)直線方程為,與橢圓方程聯(lián)立消去并整理得, ,由韋達(dá)定理可知, , ,結(jié)合可得,由題可得,故直線的方程為,可得直線過定點(diǎn).

試題解析:)根據(jù)題意得: , ,

,

,

故橢圓的方程為

)證明:當(dāng)直線的斜率存在時(shí),設(shè)直線方程為,

聯(lián)立直線方程與橢圓方程得,消去

化簡得,

設(shè) ,

則由韋達(dá)定理可知, ,

, ,且,

,

化簡得: ,

直線不過,

,

,

直線的方程為,

,直線過定點(diǎn),

當(dāng)直線的斜率不存在時(shí),設(shè) ,

由斜率之和為,得,

解得,此時(shí)方程為,

此時(shí)直線過點(diǎn)

綜上所述,直線過定點(diǎn)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上的兩個(gè)動(dòng)點(diǎn), 的橫坐標(biāo),線段的中點(diǎn)坐標(biāo)為,直線與線段的垂直平分線相交于點(diǎn).

1)求點(diǎn)的坐標(biāo);

(2)求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】長方形中, , 中點(diǎn)(圖1).將沿折起,使得(圖2)在圖2中:

(1)求證:平面 平面;

(2)在線段上是否存點(diǎn),使得二面角為大小為,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線lyt(t≠0)交y軸于點(diǎn)M,交拋物線Cy2=2px(p>0)于點(diǎn)PM關(guān)于點(diǎn)P的對稱點(diǎn)為N,連結(jié)ON并延長交C于點(diǎn)H.

(1)求;

(2)除H以外,直線MHC是否有其它公共點(diǎn)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2axxln x,且f(x)≥0.

(1)a;

(2)證明:f(x)存在唯一的極大值點(diǎn)x0,且e2<f(x0)<22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·成都一診)已知橢圓的右焦點(diǎn)為F,設(shè)直線lx=5與x軸的交點(diǎn)為E,過點(diǎn)F且斜率為k的直線l1與橢圓交于AB兩點(diǎn),M為線段EF的中點(diǎn).

(1)若直線l1的傾斜角為,求△ABM的面積S的值;

(2)過點(diǎn)B作直線BNl于點(diǎn)N,證明:A,M,N三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PAPD的中點(diǎn),

在此幾何體中,給出下面四個(gè)結(jié)論:

直線BE與直線CF異面; 直線BE與直線AF異面;

直線EF平面PBC; 平面BCE平面PAD.

其中正確的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點(diǎn)與短軸兩個(gè)端點(diǎn)的連線互相垂直.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)點(diǎn)為橢圓的上一點(diǎn),過原點(diǎn)且垂直于的直線與直線交于點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求過點(diǎn)的切線方程;

(2)當(dāng)時(shí),求函數(shù)的最大值;

(3)證明:當(dāng)時(shí),不等式對任意均成立(其中為自然對數(shù)的底數(shù), ).

查看答案和解析>>

同步練習(xí)冊答案