【題目】下列結論:

“直線l與平面平行”是“直線l在平面外”的充分不必要條件;

p,,則,

命題“設a,,若,則”為真命題;

”是“函數(shù)上單調(diào)遞增”的充要條件.

其中所有正確結論的序號為______

【答案】

【解析】

由線面的位置關系,結合充分必要條件的定義可判斷;由特稱命題的否定為全稱命題,可判斷;由原命題和逆否命題互為等價命題,可判斷;由導數(shù)大于等于0恒成立,結合充分必要條件的定義,可判斷

“直線l與平面平行”可推得“直線l在平面外”,反之,不成立,直線l可能與平面相交,故“直線l與平面平行”是“直線l在平面外”的充分不必要條件,故正確;

p,,則,,故錯誤;

命題“設a,若,則”的逆否命題為

“設a,,若,則”,即為真命題,故正確;

函數(shù)上單調(diào)遞增,可得恒成立,即有的最小值,可得,“”是“函數(shù)上單調(diào)遞增”的充分不必要條件,故錯誤.

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線lx2y20.

1)求直線l1yx2關于直線l對稱的直線l2的方程;

2)求直線l關于點A(1,1)對稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線,.

(1)直線是否過定點?若過定點,求出該定點坐標,若不過定點,請說明理由;

(2)已知點,若直線上存在點滿足條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中, , 平面, , 的中點為

)求證:

)求證:平面平面

)當為何值時,能使?請給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)證明:當時,恒成立;

(2)若函數(shù)上只有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是由一平面內(nèi)的個向量組成的集合,且的模不小于中除外的所有向量和的模.則稱的極大向量.有下列命題:

中每個向量的方向都相同,則中必存在一個極大向量;

給定平面內(nèi)兩個不共線向量,在該平面內(nèi)總存在唯一的平面向量,使得中的每個元素都是極大向量;

③若中的每個元素都是極大向量,且中無公共元素,則中的每一個元素也都是極大向量.

其中真命題的序號是_______________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】微信紅包已經(jīng)成為中國百姓歡度春節(jié)時非常喜愛的一項活動.小明收集班內(nèi)20名同學今年春節(jié)期間搶到紅包金額(元)如下(四舍五入取整數(shù)):

102 52 41 121 72

162 50 22 158 46

43 136 95 192 59

99 22 68 98 79

對這20個數(shù)據(jù)進行分組,各組的頻數(shù)如下:

Ⅰ)寫出m,n的值,并回答這20名同學搶到的紅包金額的中位數(shù)落在哪個組別;

C組紅包金額的平均數(shù)與方差分別為,E組紅包金額的平均數(shù)與方差分別為,試分別比較、的大。唬ㄖ恍鑼懗鼋Y論)

Ⅲ)從A,E兩組所有數(shù)據(jù)中任取2個,求這2個數(shù)據(jù)差的絕對值大于100的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設關于某設備的使用年限和所支出的維修費用(萬元)有如下的統(tǒng)計資料:

使用年限

2

3

4

5

6

維修費用

2.2

3.8

5.5

6.5

7.0

若由資料知呈線性相關關系.

1)請畫出上表數(shù)據(jù)的散點圖;

2)請根據(jù)最小二乘法求出線性回歸方程的回歸系數(shù)

3)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義域為的函數(shù)的導函數(shù),,,則的解集為( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案