20.有下列命題:
①x=0是函數(shù)y=x3+1的極值點(diǎn);
②三次函數(shù)f(x)=ax3+bx2+cx+d有極值點(diǎn)的充要條件是b2-3ac>0;
③奇函數(shù)f(x)=mx3+(m-1)x2+48(m-2)x+n在區(qū)間(4,+∞)上是遞增的;
其中真命題的序號是②③.

分析 ①用極值點(diǎn)的定義的來判斷;
②通過導(dǎo)數(shù)有不等根來判斷;
③當(dāng)x>4時,f′(x)>0恒成立來判斷.

解答 解:①y′=3x2≥0,無極值點(diǎn),故①錯誤;
②f′(x)=3ax2+2bx+c=0有解,需滿足:b2-3ac>,故②正確;
③f′(x)=3mx2+2(m-1)x+48(m-2),當(dāng)x>4時,f′(x)>0,故③正確;
故答案為:②③.

點(diǎn)評 本題主要考查函數(shù)極值點(diǎn)的定義及有極值的條件,考查函數(shù)的單調(diào)性,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.畫出(x+2y-1)(x-y+3)>0表示的平面區(qū)域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.書架上豎排著六本書,現(xiàn)將新購的3本書上架,要求不調(diào)亂書架上原有的書,那么不同的上架方式共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=xlnx-$\frac{1}{2}$mx2-x,m∈R,當(dāng)m=-2時,求函數(shù)f(x)的所有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.有一批儀器原售價為每臺1000元.在甲、乙兩家商店均有銷售.甲商店用如下方式促銷,買一臺的單價為980元,買兩臺每臺的單價為960元,以此類推,每多買一臺則所買各臺單價均再減少20元,但每臺最低不能低于640元,乙商店一律按原價的75%銷售,某學(xué)校需購買一批此類儀器,去哪家商店購買花費(fèi)較少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知θ是第二象限的角,且sin$\frac{θ}{2}$<cos$\frac{θ}{2}$,那么sin$\frac{θ}{2}$+cos$\frac{θ}{2}$的取值范圍是( 。
A.(-1,0)B.(1,$\sqrt{2}$)C.(-1,1)D.(-$\sqrt{2}$,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sin2x+$\sqrt{3}$sinxcosx-$\frac{1}{2}$
(1)若x∈[0,$\frac{π}{2}$],求函數(shù)f(x)的取值范圍;
(2)已知a,b,c分別為△ABC內(nèi)角A、B、C的對邊,其中A為銳角,a=2$\sqrt{3}$,c=4且f(A)=1,求A,b和△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是偶函數(shù),其圖象關(guān)于點(diǎn)M($\frac{3π}{4}$,0)對稱,且在區(qū)間[0,$\frac{π}{2}$]上是單調(diào)函數(shù),求φ和ω的值,并求方程f(x)-lgx=0的實(shí)根個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\overrightarrow{{P}_{1}{P}_{2}}$=-$\frac{4}{3}$$\overrightarrow{{P}_{1}P}$,若$\overrightarrow{{P}_{1}P}$=-λ$\overrightarrow{P{P}_{2}}$,則λ=( 。
A.-3B.3C.-$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊答案