考點:數(shù)學(xué)歸納法,數(shù)列遞推式
專題:點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)由S
n=
(a
n+
)(n∈N*),可求得a
1,a
2,a
3;
(2)由(1)可猜想,a
n=
-
(n∈N*),然后利用數(shù)學(xué)歸納法證明即可.
解答:
(1)解:(由S
n=
(a
n+
)(n∈N*),
令n=1得a
1=
(a
1+
)⇒a
1=1;
令n=2得a
1+a
2=
(a
2+
)⇒a
2=
-1;
令n=3得a
1+a
2+a
3=
(a
3+
),即1+(
-1)+a
3=
(a
3+
),
整理得:
a32+2
a
3-1=0,解得a
3=-
+
或a
3=-
-
(因為a
3>0,故舍去);
(2)根據(jù)(1)猜想,a
n=
-
(n∈N*).
證明:①當(dāng)n=1時,a
1=1,等式成立;
②假設(shè)n=k時,a
k=
-
,
則S
k=a
1+a
2+…+a
k=1+(
-1)+(
-
)+…+(
-
)=
,
則n=k+1時,由S
k+1=S
k+a
k+1=
+a
k+1=
(a
k+1+
),
整理得:
ak+12+2
a
k+1-1=0,解得a
k+1=
-
或a
k+1=-
-
(舍去),
即n=k+1時,等式也成立;
綜合①②知,a
n=
-
(n∈N*).
點評:本題考查數(shù)學(xué)歸納法,著重考查計算、觀察、猜想及運算推理能力,屬于中檔題.