分析 (Ⅰ)由a1,a3,a9成等比數(shù)列,(a1+2d)2=a1•(a1+8d),求得d=a1,由S4=4a1+6d=10,即可求得a1=1,d=1,數(shù)列{an}的通項(xiàng)公式an=n;
(Ⅱ)bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,利用“裂項(xiàng)法”即可求得數(shù)列{bn}的前n項(xiàng)和Sn.
解答 解:(I)設(shè)等差數(shù)列{ an}是公差為d,
∵a1,a3,a9成等比數(shù)列,
∴a32=a1•a9,
∴(a1+2d)2=a1•(a1+8d),
整理得:d=a1,①
由S4=4a1+6d=10,②
解得:a1=1,d=1,
由等差數(shù)列的通項(xiàng)公式可知:an=1+(n-1)=n,
∴數(shù)列{an}的通項(xiàng)公式an=n;
(Ⅱ)由(1)bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
數(shù)列{bn}的前n項(xiàng)和Sn,Sn=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$),
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$,
=1-$\frac{1}{n+1}$,
=$\frac{n}{n+1}$,
數(shù)列{bn}的前n項(xiàng)和Sn=$\frac{n}{n+1}$.
點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式及性質(zhì),考查“裂項(xiàng)法”求數(shù)列通項(xiàng)公式,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2+i | B. | 2-i | C. | -2+i | D. | -2-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=-2x | B. | y=2x | C. | y=lgx | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com