8.如圖,在6×6的方格中,已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$的起點和終點均在格點,且滿足向量$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$(x,y∈R),那么x+y=3.

分析 取互相垂直的兩個單位向量,用單位向量表示出三個向量,屬于平面向量的基本定理列出方程組解出x,y.

解答 解:分別設(shè)方向水平向右和向上的單位向量為$\overrightarrow{i},\overrightarrow{j}$,則$\overrightarrow{a}$=2$\overrightarrow{i}$-$\overrightarrow{j}$,$\overrightarrow$=$\overrightarrow{i}+2\overrightarrow{j}$,$\overrightarrow{c}$=4$\overrightarrow{i}$+3$\overrightarrow{j}$.
又∵$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$=(2x+y)$\overrightarrow{i}$+(2y-x)$\overrightarrow{j}$,∴$\left\{\begin{array}{l}{2x+y=4}\\{2y-x=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$.
∴x+y=3.
故答案為:3.

點評 本題考查了平面向量的基本定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.數(shù)列{an}前n項和Sn=3n-1,
(1)試寫出數(shù)列的前4項,
(2)數(shù)列{an}是等比數(shù)列嗎?
(3)求出數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\frac{9x}{1+a{x}^{2}}$(a>0),則f(x)在[$\frac{1}{2}$,2]上的最大值為(  )
A.0B.$\frac{18}{4a+1}$
C.$\frac{18}{a+4}$或$\frac{18}{4a+1}$D.$\frac{18}{4a+1}$或$\frac{18}{a+4}$或$\frac{9\sqrt{a}}{2a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等差數(shù)列{an}的前n項和是Sn,若a1+a2=5,a5+a6=13,則S6的值為( 。
A.18B.27C.36D.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}}$,b=($\frac{1}{3}$)${\;}^{-\frac{1}{2}}}$,c=log2$\frac{1}{3}$,則a,b,c的大小關(guān)系是(  )
A.c<a<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.經(jīng)過點A(2,3)和點B(4,7)的直線方程是( 。
A.2x+y-7=0B.2x-y+1=0C.2x-y-1=0D.-2y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是王老師鍛煉時所走的離家距離(S)與行走時間(t)之間的函數(shù)關(guān)系圖,若用黑點表示王老師家的位置,則王老師行走的路線可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={0,1,2},B={2,3},則集合A∪B=( 。
A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求圖中a,b的值及函數(shù)f(x)的遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案