分析 (1)對(duì)函數(shù)f(x)求導(dǎo)后知g(x),對(duì)g(x)求導(dǎo)后得到單調(diào)性.
(2)利用導(dǎo)函數(shù)求得F(x)的單調(diào)性及最值,然后對(duì)a分情況討論,利用F(x)無(wú)零點(diǎn)分別求得a的取值范圍,再取并集即可.
解答 解:(1)∵f(x)=e${\;}^{\frac{x}{2}}$-$\frac{x}{4}$,
∴f′(x)=$\frac{1}{2}{e}^{\frac{x}{2}}$-$\frac{1}{4}$,
∴g(x)=(x+1)($\frac{1}{2}{e}^{\frac{x}{2}}$-$\frac{1}{4}$),
∴g′(x)=$\frac{1}{4}$[(x+3)${e}^{\frac{x}{2}}$-1],
當(dāng)x>-1時(shí),g′(x)>0,
∴g(x)在(-1,+∞)上單調(diào)遞增.
(2)由F(x)=ln(x+1)-af(x)+4知,F(xiàn)′(x)=$\frac{a}{x+1}$($\frac{1}{a}$-g(x)),
由(1)知,g(x)在(-1,+∞)上單調(diào)遞增,且g(-1)=0 可知當(dāng)x∈(-1,+∞)時(shí),g(x)∈(0,+∞),
則F′(x)=$\frac{a}{x+1}$($\frac{1}{a}$-g(x))有唯一零點(diǎn),
設(shè)此零點(diǎn)為x=t,易知x∈(-1,t)時(shí),F(xiàn)′(x)>0,F(xiàn)(x)單調(diào)遞增;
x∈(t,+∞)時(shí),F(xiàn)′(t)<0.F(x)單調(diào)遞減.
知F(x)max=F(t)=ln(t+1)-af(t)+4,
其中a=$\frac{1}{g(t)}$,
令G(x)=ln(x+1)-$\frac{f(x)}{g(x)}$+4,
則G′(x)=$\frac{f(x)g′(x)}{[g(x)]^{2}}$,
易知f(x)>0在(-1,+∞)上恒成立,
∴G′(x)>0,G(x)在(-1,+∞)上單調(diào)遞增,且G(0)=0,
①當(dāng)0<a<4時(shí),g(t)=$\frac{1}{a}$>$\frac{1}{4}$=g(0),
由g(x)在(-1,+∞)上單調(diào)遞增,知t>0,則F(x)max=F(t)=G(t)>G(0)=0,
由F(x)在(-1,t)上單調(diào)遞增,-1<e-4-1<0<t,f(x)>0,g(t)>0在(-1,+∞)上均恒成立,
則F(e-4-1)=-af(e-4-1)<0,
∴F(t)F(e-4-1)<0
∴F(x)在(-1,t)上有零點(diǎn),與條件不符;
②當(dāng)a=4時(shí),g(t)=$\frac{1}{a}$=$\frac{1}{4}$=g(0),由g(x)的單調(diào)性可知t=0,
則F(x)max=F(t)=G(t)=G(0)=0,此時(shí)F(x)有一個(gè)零點(diǎn),與條件不符;
③當(dāng)a>4時(shí),g(t)=$\frac{1}{a}$<$\frac{1}{4}$=g(0),由g(x)的單調(diào)性知t<0,
則F(x)max=F(t)=G(t)<G(0)=0,此時(shí)F(x)沒(méi)有零點(diǎn).
綜上所述,當(dāng)F(x)=ln(x+1)-af(x)+4無(wú)零點(diǎn)時(shí),正數(shù)a的取值范圍是a∈(4,+∞).
點(diǎn)評(píng) 本題考查函數(shù)的綜合應(yīng)用,以及導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | -$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4 | B. | -8 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com