A. | $(-\frac{1}{2},+∞)$ | B. | $(\frac{1}{2},+∞)$ | C. | $(-∞,-\frac{1}{2})$ | D. | $(-∞,\frac{1}{2})$ |
分析 先構(gòu)造函數(shù)令F(x)=f(x)-x3,判斷出F(x)的奇偶性和單調(diào)性,即可得到|x|>|x-1|,解得即可.
解答 解:令F(x)=f(x)-x3,則由f(x)-f(-x)=2x3,
可得F(-x)=F(x),故F(x)為偶函數(shù),
又當(dāng)x≥0時(shí),f′(x)>3x2即F′(x)>0,
所以F(x)在(0,+∞)上為增函數(shù).
不等式f(x)-f(x-1)>3x2-3x+1化為F(x)>F(x-1),
所以有|x|>|x-1|,
解得x>$\frac{1}{2}$.
故選:B.
點(diǎn)評 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的對稱性、單調(diào)性、奇偶性的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | -$\frac{3}{2}$ | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{2}$ | C. | $\frac{7}{8}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com