5.已知y=f(x)(x∈R)的導(dǎo)函數(shù)為f′(x).若f(x)-f(-x)=2x3,且當(dāng)x≥0時(shí),f′(x)>3x2,則不等式f(x)-f(x-1)>3x2-3x+1的解集是( 。
A.$(-\frac{1}{2},+∞)$B.$(\frac{1}{2},+∞)$C.$(-∞,-\frac{1}{2})$D.$(-∞,\frac{1}{2})$

分析 先構(gòu)造函數(shù)令F(x)=f(x)-x3,判斷出F(x)的奇偶性和單調(diào)性,即可得到|x|>|x-1|,解得即可.

解答 解:令F(x)=f(x)-x3,則由f(x)-f(-x)=2x3,
可得F(-x)=F(x),故F(x)為偶函數(shù),
又當(dāng)x≥0時(shí),f′(x)>3x2即F′(x)>0,
所以F(x)在(0,+∞)上為增函數(shù).
不等式f(x)-f(x-1)>3x2-3x+1化為F(x)>F(x-1),
所以有|x|>|x-1|,
解得x>$\frac{1}{2}$.
故選:B.

點(diǎn)評 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的對稱性、單調(diào)性、奇偶性的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知曲線C1:$\frac{|x|}{a}$+$\frac{|y|}$=1(a>b>0)所圍成的封閉圖形的面積為4$\sqrt{5}$,曲線C1的內(nèi)切圓半徑為$\frac{2\sqrt{5}}{3}$,記C2為以曲線C1與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓.
(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)設(shè)AB是過橢圓C2中心O的任意弦,M是橢圓上一點(diǎn),且滿足($\overrightarrow{MA}$+$\overrightarrow{MB}$)•$\overrightarrow{AB}$=0,求△AMB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標(biāo)系中,定義$\left\{\begin{array}{l}{{x}_{n+1}={x}_{n}-{y}_{n}}\\{{y}_{n+1}={x}_{n}+{y}_{n}}\end{array}\right.$,(n∈N*) 為點(diǎn)Pn(xn,yn)到點(diǎn)Pn+1(xn+1,yn+1)的一個(gè)變換,我們把它稱為點(diǎn)變換,已知P1(1,0),P2(x2,y2),P3(x3,y3),…是經(jīng)過點(diǎn)變換得到的一無窮點(diǎn)列,則P3的坐標(biāo)為(0,2);設(shè)an=$\overrightarrow{{P}_{n}{P}_{n+1}•}$$\overrightarrow{{P}_{n+1}{P}_{n+2}}$,則滿足a1+a2+…+an>1000的最小正整數(shù)n=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)$f(x)=(m-\frac{n}{3})•{3^x}+{x^2}+2nx$,記函數(shù)y=f(x)的零點(diǎn)構(gòu)成的集合為A,函數(shù)y=f[f(x)]的零點(diǎn)構(gòu)成的集合為B,若A=B,則m+n的取值范圍為[0,$\frac{8}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.有一個(gè)解三角形的題因紙張破損有一個(gè)條件不清,具體如下:“在△ABC中,角A、B、C所對的邊分別為a、b、c,已知a=$\sqrt{3}$,B=45°,c=$\frac{\sqrt{6}+\sqrt{2}}{2}$,求角A:“經(jīng)推斷破損處的條件為三角形一邊的長度,且答案提示A=60°,試將條件補(bǔ)充完整.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)的定義域?yàn)镽,f(-1)=f(2)=1,其導(dǎo)數(shù)f′(x)的圖象如圖所示,設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{xy≥0}\\{f(2x+y)≤1}\end{array}\right.$則表達(dá)式z=3x+y的最小值為( 。
A.0B.-1C.-$\frac{3}{2}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.環(huán)保組織隨機(jī)抽檢市內(nèi)某河流2015年內(nèi)100天的水質(zhì),檢測單位體積河水中重金屬含量x,并根據(jù)抽檢數(shù)據(jù)繪制了如下圖所示的頻率分布直方圖.
(Ⅰ)求圖中a的值;
(Ⅱ)假設(shè)某企業(yè)每天由重金屬污染造成的經(jīng)濟(jì)損失y(單位:元)與單位體積河水中重金屬含量x
的關(guān)系式為$y=\left\{\begin{array}{l}0,0≤x≤100\\ 4x-400,100<x≤200\\ 5x-600,200<x≤250\end{array}\right.$,若將頻率視為概率,在本年內(nèi)隨機(jī)抽取一天,試估計(jì)這天經(jīng)濟(jì)損失不超過500元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}<$φ<$\frac{π}{2}$)的部分圖象如圖所示,則f($\frac{π}{3}$)=(  )
A.$\sqrt{3}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1+a3=$\frac{5}{8}$,S4=$\frac{5}{4}$,則數(shù)列{an}的公比為(  )
A.$\frac{1}{8}$B.$\frac{1}{2}$C.$\frac{7}{8}$D.1

查看答案和解析>>

同步練習(xí)冊答案