A. | $\sqrt{3}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
分析 由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式,從而求得f($\frac{π}{3}$)的值.
解答 解:根據(jù)函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}<$φ<$\frac{π}{2}$)的部分圖象,
可得$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{11π}{12}$-$\frac{5π}{12}$,求得ω=2.
再根據(jù)五點法作圖可的2•$\frac{5π}{12}$+φ=$\frac{π}{2}$,求得φ=-$\frac{π}{3}$,∴f(x)=2sin(2x-$\frac{π}{3}$),
∴f($\frac{π}{3}$)=2sin$\frac{π}{3}$=$\sqrt{3}$,
故選:A.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由五點法作圖求出φ的值,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-\frac{1}{2},+∞)$ | B. | $(\frac{1}{2},+∞)$ | C. | $(-∞,-\frac{1}{2})$ | D. | $(-∞,\frac{1}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q是真命題 | B. | p∧(﹁q)是真命題 | C. | ﹁p∧q是真命題 | D. | ﹁p∧﹁q是假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
賠付金額(元) | 0 | 1500 | 3000 | 5000 | 5000以上 |
頻率 | 0.50 | 0.18 | 0.15 | 0.12 | 0.05 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com