12.極坐標(biāo)系的極點為直角坐標(biāo)系xOy的原點,極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同.已知曲線C的極坐標(biāo)方程為ρ=2(cosθ+sinθ),斜率為$\frac{\sqrt{3}}{3}$的直線l交y軸與點E(0,1).
(Ⅰ)求曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)直線l與曲線C交于A、B兩點,求|EA|•|EB|的值.

分析 (1)由ρ=2(cosθ+sinθ),得ρ2=2(ρcosθ+ρsinθ),由此能求出C的標(biāo)準(zhǔn)方程;由斜率為$\frac{\sqrt{3}}{3}$的直線l交y軸與點E(0,1),能求出直線l的參數(shù)方程.
(2)直線l與曲線C聯(lián)立得${t}^{2}-\sqrt{3}t-1=0$,由此能求出|EA|•|EB|的值.

解答 解:(1)由ρ=2(cosθ+sinθ),得ρ2=2(ρcosθ+ρsinθ),
∴x2+y2=2x+2y,即(x-1)2+(y-1)2=2,
∵斜率為$\frac{\sqrt{3}}{3}$的直線l交y軸與點E(0,1),
∴直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$,t為參數(shù).
(2)把$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$代入(x-1)2+(y-1)2=2,
得${t}^{2}-\sqrt{3}t-1=0$,
∴${t}_{1}+{t}_{2}=\sqrt{3}$,t1t2=-1,
∴|EA|•|EB|=|t1|•|t2|=|t1t2|=|-1|=1.

點評 本題考查極坐標(biāo)方程與普通方程的互化,考查直線的參數(shù)方程的求法,考查|EA|•|EB|的值的求法,是基礎(chǔ)題,解題時要熟練掌握參數(shù)方程和極坐標(biāo)方程的概念.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.利用二分法求$\root{3}{3}$的近似值(精確度0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知正四棱柱ABCD-A1B1C1D1 的底面邊長為3,側(cè)棱長為4,連接A1B,過A作AF⊥A1B垂足為F,且AF的延長線交B1B于E.
(1)求證:D1B⊥平面AEC;
(2)求三棱錐B-AEC的體積;
(3)求二面角B-AE-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,M是PC的中點.
(1)求證:PA∥平面BDM;
(2)若PA=AD=2,求三棱錐M-BDC與多面體PDABM的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)△ABC為正三角形,BC、AC上分別有一點D、E,且BD=$\frac{1}{2}$CD,CE=$\frac{1}{2}$AE,BE、AD相交于P,求證:P、D、C、E四點共圓,且AP⊥CP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知圓x2+y2=4與圓x2+y2-6x+6y+14=0關(guān)于直線l對稱,則直線l的方程是( 。
A.x-2y+1=0B.2x-y-1=0C.x-y+3=0D.x-y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)a∈R,復(fù)數(shù)$\frac{a+3i}{1+2i}$(i為虛數(shù)單位)是純虛數(shù),則a的值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)二次函數(shù)f(x)=ax2-2x+c(x∈R)的值域為[0,+∞),則$\frac{1}{c+1}$+$\frac{9}{a+9}$的最大值是( 。
A.$\frac{3}{2}$B.2C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.己知tanθ=$\sqrt{3}$,則sinθcosθ-cos2θ=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}-1}{4}$D.$\frac{1-\sqrt{3}}{4}$

查看答案和解析>>

同步練習(xí)冊答案