A. | 13π | B. | 17π | C. | 52π | D. | 68π |
分析 取PC的中點(diǎn)O,連結(jié)OA、OB.由線面垂直的判定與性質(zhì),證出BC⊥PB且PA⊥AC,得到△PAC與△PBC是具有公共斜邊的直角三角形,從而得出OA=OB=OC=OP=$\frac{1}{2}$PC,所以P、A、B、C四點(diǎn)在以O(shè)為球心的球面上.根據(jù)題中的數(shù)據(jù),利用勾股定理算出PC長(zhǎng),進(jìn)而得到球半徑R,利用球的表面積公式加以計(jì)算,可得答案.
解答 解:取PC的中點(diǎn)O,連結(jié)OA、OB
∵PA⊥平面ABC,BC?平面ABC,∴PA⊥BC,
又∵AB⊥BC,PA∩AB=A,∴BC⊥平面PAB,
∵PB?平面PAB,∴BC⊥PB,
∵OB是Rt△PBC的斜邊上的中線,OB=$\frac{1}{2}$PC.
同理可得:Rt△PAC中,OA=$\frac{1}{2}$PC,
∴OA=OB=OC=OP=$\frac{1}{2}$PC,可得P、A、B、C四點(diǎn)在以O(shè)為球心的球面上.
Rt△ABC中,AB=BC=2,可得AC=2$\sqrt{2}$,
Rt△PAC中,PA=3,可得PC=$\sqrt{17}$.
∴球O的半徑R=$\frac{\sqrt{17}}{2}$,可得球O的表面積為S=4πR2=17π.
故選:B.
點(diǎn)評(píng) 本題給出特殊的三棱錐,由它的外接球的表面積.著重考查了線面垂直的判定與性質(zhì)、勾股定理與球的表面積公式等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
喜愛運(yùn)動(dòng) | 不喜愛運(yùn)動(dòng) | 總計(jì) | |
男 | 10 | 16 | |
女 | 6 | 14 | |
總計(jì) | 30 |
P( k2≥k0) | 0.40 | 0.25 | 0.10 | 0.05 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=0或$\overrightarrow$=0 | B. | 若λ$\overrightarrow{a}$=0,則λ=0或$\overrightarrow{a}$=$\overrightarrow{0}$ | ||
C. | 若$\overrightarrow{a}$2=$\overrightarrow$2,則$\overrightarrow{a}$=$\overrightarrow$或$\overrightarrow{a}$=-$\overrightarrow$ | D. | 若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | -$\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{{e}^{x}}$,e) | B. | (0,$\frac{1}{{e}^{x}}$) | C. | (0,$\frac{1}{2e}$) | D. | (0,$\frac{1}{e}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m≥1 | B. | $m≥\sqrt{2}$ | C. | m≥2 | D. | $m≥\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com