14.已知sinθ+cosθ=$\frac{1}{5}$($\frac{π}{2}$<θ<π),求:
①sinθ•cosθ;
②sinθ-cosθ的值;
③sin3θ-cos3θ的值;
④tanθ的值.

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.

解答 解:①∵sinθ+cosθ=$\frac{1}{5}$($\frac{π}{2}$<θ<π),∴平方可得1+2sinθcosθ=$\frac{1}{25}$,
∴sinθcosθ=-$\frac{12}{25}$.
②sinθ-cosθ=$\sqrt{{(sinθ-cosθ)}^{2}}$=$\sqrt{1-2•(-\frac{12}{25})}$=$\frac{7}{5}$.
③由①②可得sinθ=$\frac{4}{5}$,cosθ=-$\frac{3}{5}$,∴sin3θ-cos3θ=${(\frac{4}{5})}^{3}$-${(-\frac{3}{5})}^{3}$=$\frac{91}{125}$.
④由③可得 tanθ=$\frac{sinθ}{cosθ}$=-$\frac{4}{3}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)z滿足(2+i)z=z+2i,則z=( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.己知函數(shù)f(x)=$\sqrt{3}$cos(2ωx-$\frac{π}{6}$),其圖象與x軸相鄰兩個(gè)交點(diǎn)的距離為$\frac{π}{2}$
(1)求函數(shù)y=f(x)的解析式;
(Ⅱ)若將f(x)的圖象向左平移m(m>0)個(gè)長度單位得到函數(shù)g(x)的圖象恰好經(jīng)過點(diǎn)(-$\frac{π}{3}$,0),求當(dāng)m取得最小值時(shí),g(x)在[-$\frac{π}{6}$,$\frac{7π}{12}$]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)直線l平行于直線6x-2y+5=0,并且經(jīng)過直線3x+2y+1=0與2x+3y+4=0的交點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線ρ:x2=4y,P(x0,y0)為拋物線ρ上的點(diǎn),若直線l經(jīng)過點(diǎn)P且斜率為$\frac{{x}_{0}}{2}$,則稱直線l為點(diǎn)P的“特征直線”.設(shè)x1、x2為方程x2-ax+b=0(a,b∈R)的兩個(gè)實(shí)根,記r(a,b)=$\left\{\begin{array}{l}{|{x}_{1}|,|{x}_{1}|≥|{x}_{2}|}\\{|{x}_{2}|,|{x}_{1}|<|{x}_{2}|}\end{array}\right.$.
(1)求點(diǎn)A(2,1)的“特征直線”l的方程
(2)己知點(diǎn)G在拋物線ρ上,點(diǎn)G的“特征直線”與雙曲線$\frac{{x}^{2}}{4}-{y}^{2}=1$經(jīng)過二、四象限的漸進(jìn)線垂直,且與y軸的交于點(diǎn)H,點(diǎn)Q(a,b)為線段GH上的點(diǎn).求證:r(a,b)=2
(3)已知C、D是拋物線ρ上異于原點(diǎn)的兩個(gè)不同的點(diǎn),點(diǎn)C、D的“特征直線”分別為l1、l2,直線l1、l2相交于點(diǎn)M(a,b),且與y軸分別交于點(diǎn)E、F.求證:點(diǎn)M在線段CE上的充要條件為r(a,b)=$\frac{{x}_{c}}{2}$(其中xc為點(diǎn)C的橫坐際).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=$\frac{a}{3}$x3+$\frac{1}{2}$ax2+x+1無極值點(diǎn),則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.“m≥-8”是“圓x2+y2-2x+m=0面積不大于9π”的必要不充分條件(選填“充分不必要”、“必要不充分”、“既不充分也不必要”、“充要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.曲線f(x)=xsinx+2在x=$\frac{π}{2}$處的切線與直線2x-ay+1=0互相垂直,則實(shí)數(shù)a等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若sinx-2cosx=$\sqrt{5}$,則tanx=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案