分析 根據(jù)正弦定理化簡已知式子,由二倍角的余弦公式變形、和差化積公式和誘導(dǎo)公式化簡后,由內(nèi)角的范圍和正弦函數(shù)的性質(zhì)求出A與B關(guān)系,由銳角三角形的條件求出B的范圍,利用商得關(guān)系、兩角差的正弦公式化簡所求的式子,由正弦函數(shù)的性質(zhì)求出所求式子的取值范圍.
解答 解:∵b2-a2=ac,
∴由正弦定理得,sin2B-sin2A=sinAsinC,
由二倍角公式可知:$\frac{1-cos2B}{2}$-$\frac{1-cos2A}{2}$=sinAsinC,
∴$\frac{cos2A-cos2B}{2}$=sinAsinC,
和差化積公式得cos2A-cos2B=-2sin(A+B)sin(A-B),代入上式得,
-sin(A+B)sin(A-B)=sinAsinC,
∵sin(A+B)=sinC≠0,∴-sin(A-B)=sinA,即sin(B-A)=sinA,
在△ABC中,B-A=A,得B=2A,則C=π-3A,
∵△ABC為銳角三角形,
∴$\left\{\begin{array}{l}{0<2A<\frac{π}{2}}\\{0<π-3A<\frac{π}{2}}\end{array}\right.$,
∴$\frac{π}{6}$<A<$\frac{π}{4}$,$\frac{π}{3}$<B<$\frac{π}{2}$,
$\frac{1}{tanA}$-$\frac{1}{tanB}$=$\frac{cosAsinB-sinAcosB}{sinAsinB}$=$\frac{sin(B-A)}{sinAsinB}$=$\frac{1}{sinB}$,
$\frac{π}{3}$<B<$\frac{π}{2}$,$\frac{\sqrt{3}}{2}$<sinB<1,
1<$\frac{1}{sinB}$<$\frac{2\sqrt{3}}{3}$,
$\frac{1}{tanA}$-$\frac{1}{tanB}$
1<$\frac{1}{tanA}$-$\frac{1}{tanB}$<$\frac{2\sqrt{3}}{3}$,
故答案為:(1,$\frac{2\sqrt{3}}{3}$).
點(diǎn)評(píng) 本題考查了正弦定理,三角恒等變換中公式,以及正弦函數(shù)的性質(zhì),涉及知識(shí)點(diǎn)多、公式多,綜合性強(qiáng),考查化簡、變形能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$-\frac{{\sqrt{5}}}{e^x}$ | B. | y=$\sqrt{x+1}$ | C. | y=lnx | D. | y=x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①④ | B. | ①③ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com