已知定義在區(qū)間上的函數(shù)y=f(x)的圖象關(guān)于直線x=-對(duì)稱,當(dāng)x∈時(shí),函數(shù)f(x)=Asin(ωx+φ) 的圖象如圖所示.
(1)求函數(shù)y=f(x)在上的表達(dá)式;
(2)求方程f(x)=的解.
(1)
(2)x=-或-或-或.
解析試題分析:解:(1)當(dāng)x∈時(shí),A=1,=-,T=2π,ω=1.
且f(x)=sin(x+φ)過點(diǎn),
則+φ=π,φ=.
f(x)=sin.
當(dāng)-π≤x<-時(shí),-≤-x-≤,
f=sin,
而函數(shù)y=f(x)的圖象關(guān)于直線x=-對(duì)稱,
則f(x)=f,
即f(x)=sin=-sin x,-π≤x<-.
∴
(2)當(dāng)-≤x≤時(shí),≤x+≤π,
由f(x)=sin=,
得x+=或,x=-或.
當(dāng)-π≤x<-時(shí),由f(x)=-sin x=,sin x=-,
得x=-或-.
∴x=-或-或-或.
考點(diǎn):三角函數(shù)的圖像與解析式
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)三角函數(shù)的性質(zhì)來結(jié)合圖像來得到參數(shù)的求解,同事解三角方程,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的最小值是,在一個(gè)周期內(nèi)圖象最高點(diǎn)與最低點(diǎn)橫坐標(biāo)差是,又:圖象過點(diǎn),
求(1)函數(shù)解析式,
(2)函數(shù)的最大值、以及達(dá)到最大值時(shí)的集合;
(3)該函數(shù)圖象可由的圖象經(jīng)過怎樣的平移和伸縮得到?
(4)當(dāng)時(shí),函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)其中,
(I)若求的值;
(Ⅱ)在(I)的條件下,若函數(shù)的圖像的相鄰兩條對(duì)稱軸之間的距離等于,求函數(shù)的解析式;并求最小正實(shí)數(shù),使得函數(shù)的圖像象左平移個(gè)單位所對(duì)應(yīng)的函數(shù)是偶函數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知函數(shù),其中請(qǐng)分別解答以下兩小題.
(Ⅰ)若函數(shù)過點(diǎn),求函數(shù)的解析式.
(Ⅱ)如圖,點(diǎn)分別是函數(shù)的圖像在軸兩側(cè)與軸的兩個(gè)相鄰交點(diǎn), 函數(shù)圖像上的一點(diǎn),若滿足,求函數(shù)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com