求函數(shù)f(x)=
x2
x-2
(x≠2)的值域.
考點:函數(shù)的值域
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:先化簡f(x)=
x2
x-2
=(x-2)+
4
x-2
+4,借助基本不等式求值域.
解答: 解:f(x)=
x2
x-2
=(x-2)+
4
x-2
+4,
∵當(dāng)x-2>0時,(x-2)+
4
x-2
≥4,
∴當(dāng)x-2<0時,(x-2)+
4
x-2
≤-4,
∴(x-2)+
4
x-2
+4≥8或≤0,
則函數(shù)f(x)=
x2
x-2
(x≠2)的值域為(-∞,0]∪[8,+∞).
點評:本題考查了利用基本不等式求函數(shù)的值域,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某自來水公司要在公路兩側(cè)鋪設(shè)水管,公路為東西方向,在路北側(cè)沿直線鋪設(shè)線路l1,在路南側(cè)沿直線鋪設(shè)線路l2,現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線將l1與l2接通.已知AB=60m,BC=80m,公路兩側(cè)鋪設(shè)水管的費用為每米1萬元,穿過公路的EF部分鋪設(shè)水管的費用為每米2萬元,設(shè)∠EFB=
π
2
-α,矩形區(qū)域內(nèi)的鋪設(shè)水管的總費用為W.
(1)求W關(guān)于α的函數(shù)關(guān)系式;
(2)求W的最小值及相應(yīng)的角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x|(a-x),a∈R.
(1)若函數(shù)f(x)在x∈[0,2]上是單調(diào)函數(shù),求實數(shù)a的取值范圍.
(2)對于確定的正數(shù)b,不等式|x|(a-x)≤b,對x∈[-1,2]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下是關(guān)于函數(shù)f(x)=
4|x|
x2+1
的四個命題:
①f(x)的圖象關(guān)于y軸對稱;
②f(x)在區(qū)間[-1,0]∪[1,+∞)上單調(diào)遞減;
③f(x)在x=-1處取得極小值,在x=1處取得極大值;
④f(x)有最大值,無最小值;
⑤若方程f(x)-k=0至少有三個不同的實根,則實數(shù)k的取值范圍是(0,2).
其中為真命題的是
 
(請?zhí)顚懩阏J(rèn)為是真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=
a
|a|
+
b
|b|
+
c
|c|
+
abc
|abc|
,求y的范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,B=45°,A=75°,c=1,則最短邊的邊長為(  )
A、
6
2
B、1
C、
3
2
+
6
12
D、
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為第二象限角,且tan(π-α)-3=0,則cosα的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請補出完整函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的增區(qū)間;
(2)寫出函數(shù)f(x)的解析式和值域.
(3)若F(x)=f(x)-f(-x),試判斷F(x)的奇偶性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1-x+x23(1-2x)3=a0+a1x+a2x2+…+a9x9,則a0+a2+a4+…+a8=(  )
A、364B、-415
C、415D、-364

查看答案和解析>>

同步練習(xí)冊答案