11.若函數(shù)f(x+1)=2x+3,則f(0)=( 。
A.3B.1C.5D.-$\frac{2}{3}$

分析 利用函數(shù)的性質(zhì)求解.

解答 解:∵函數(shù)f(x+1)=2x+3,
∴f(0)=f(-1+1)=2×(-1)+3=1.
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=2x+1的值域?yàn)椋?,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求證:兩條平行直線Ax+By+C1=0與Ax+By+C2=0間的距離為d=$\frac{|{C}_{1}-{C}_{2}|}{\sqrt{{A}^{2}+{B}^{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知α是第二象限角,則由sinα=$\frac{\sqrt{3}}{2}$可推出cosα=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(1,2),則|$\overrightarrow{a}$|=( 。
A.3B.$\sqrt{3}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=-5,a6=a4+6,解答下列問(wèn)題:
(1)求該數(shù)列的an和a20;
(2)求S10
(3)判斷79是否為該數(shù)列的項(xiàng),如果是,是第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.曲線y=x3的切線l與直線x+2y-1=0垂直,則切線l的方程為y=2x±$\frac{4\sqrt{6}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系xoy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.
(Ⅰ)若直線l過(guò)點(diǎn)A(-2,4),且被圓C1截得的弦長(zhǎng)為2$\sqrt{3}$,求直線l的方程;
(Ⅱ)設(shè)P為平面上的點(diǎn),滿足:存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線l1和l2,它們分別與圓C2相交,且直線l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,試求所有滿足點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,動(dòng)圓x2+y2-4xcosθ-6ysinθ+5sin2θ+3=0,θ∈R的圓心為P(x,y),求2x+y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案