分析 根據(jù)題意,分析可得直線過圓x2+y2-2x+4y=0的圓心,由圓的一般方程可得圓心的坐標(biāo),即可得點(-1,2)在直線y=ax+1上,將點的坐標(biāo)代入直線方程可得2=a×(-1)+1,解可得答案.
解答 解:根據(jù)題意,已知直線y=ax+1平分圓x2+y2-2x+4y=0,
即直線過圓x2+y2-2x+4y=0的圓心,而圓x2+y2-2x+4y=0的圓心為(1,-2),
即點(1,-2)在直線y=ax+1上,
有-2=a×1+1,
解可得a=-3;
故答案為:-3.
點評 本題考查直線與圓的位置關(guān)系,解題的關(guān)鍵是分析得到直線過圓的圓心.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z) | B. | [kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z) | ||
C. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z) | D. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“?x∈R使得x2+x+1<0”的否定是“?x∈R均有x2+x+1<0” | |
B. | 若p為真命題,q為假命題,則(¬p)∨q為真命題 | |
C. | 為了了解高考前高三學(xué)生每天的學(xué)習(xí)時間,現(xiàn)要用系統(tǒng)抽樣的方法從某班50個學(xué)生中抽取一個容量為10的樣本,已知50個學(xué)生的編號為1,2,3…50,若8號被選出,則18號也會被選出 | |
D. | 已知m、n是兩條不同直線,α、β是兩個不同平面,α∩β=m,則“n?α,n⊥m”是“α⊥β”的充分條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,$\sqrt{2}$] | B. | [-$\sqrt{2}$,2] | C. | [-2,-$\sqrt{2}$] | D. | (-2,-$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ②④ | C. | ①④ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com