分析 (1)由過(guò)焦點(diǎn)且與長(zhǎng)軸垂直的直線被橢圓所截得線段長(zhǎng)為1,可得$\frac{2^{2}}{a}$=1,又e=$\frac{\sqrt{3}}{2}$=$\frac{c}{a}$,a2=b2+c2,聯(lián)立解出即可得出.
(2)設(shè)直線EF的方程為:y=kx,則直線OD的方程為:$y=-\frac{1}{k}$x.(k≠0).聯(lián)立$\left\{\begin{array}{l}{y=kx}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,解得${x}_{E}^{2}$,${y}_{E}^{2}$.可得:|EF|2=4(${x}_{E}^{2}$+${y}_{E}^{2}$).同理可得:xD,yD.|OD|2.設(shè)△DEF的面積=S.可得S2=$\frac{1}{4}|EF{|}^{2}|OD{|}^{2}$,化簡(jiǎn)利用二次函數(shù)的單調(diào)性即可得出.
解答 解:(1)∵過(guò)焦點(diǎn)且與長(zhǎng)軸垂直的直線被橢圓所截得線段長(zhǎng)為1,
∴$\frac{2^{2}}{a}$=1,又e=$\frac{\sqrt{3}}{2}$=$\frac{c}{a}$,a2=b2+c2,
聯(lián)立解得a=2,b=1,c=$\sqrt{3}$.
∴橢圓C的方程為$\frac{{x}^{2}}{4}+{y}^{2}$=1.
(2)設(shè)直線EF的方程為:y=kx,則直線OD的方程為:$y=-\frac{1}{k}$x.(k≠0).
聯(lián)立$\left\{\begin{array}{l}{y=kx}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,解得${x}_{E}^{2}$=$\frac{4}{1+4{k}^{2}}$,${y}_{E}^{2}$=$\frac{4{k}^{2}}{1+4{k}^{2}}$.
∴|EF|2=4(${x}_{E}^{2}$+${y}_{E}^{2}$)=$\frac{16(1+{k}^{2})}{1+4{k}^{2}}$.
同理可得:xD=$\frac{-2k}{\sqrt{4+{k}^{2}}}$,yD=$\frac{2}{\sqrt{4+{k}^{2}}}$.
|OD|2=$\frac{4(1+{k}^{2})}{4+{k}^{2}}$.
設(shè)△DEF的面積=S.
∴S2=$\frac{1}{4}|EF{|}^{2}|OD{|}^{2}$=$\frac{1}{4}$×$\frac{16(1+{k}^{2})}{1+4{k}^{2}}$×$\frac{4(1+{k}^{2})}{4+{k}^{2}}$=$\frac{16(1+{k}^{2})^{2}}{4+17{k}^{2}+4{k}^{4}}$=f(k),
令1+k2=t>1,則f(k)=$\frac{16{t}^{2}}{4{t}^{2}+9t-9}$=$\frac{16}{-9(\frac{1}{t}-\frac{1}{2})^{2}+\frac{25}{4}}$$≥\frac{64}{25}$.
當(dāng)且僅當(dāng)t=2,k=-1時(shí)取等號(hào).
∴△DEF的面積存在最小值$\frac{8}{5}$.
此時(shí)D$(\frac{2\sqrt{5}}{5},\frac{2\sqrt{5}}{5})$.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問(wèn)題、相互垂直的直線斜率之間的關(guān)系、“換元法”、三角形面積計(jì)算公式、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2p}$ | B. | -$\frac{1}{p}$ | C. | $\frac{1}{p}$ | D. | $\frac{1}{2p}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若m⊥n,則n⊥β | B. | 若m⊥n,n?α,則n⊥β | C. | 若m∥n,則n∥β | D. | 若m∥n,則n⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
未發(fā)病 | 發(fā)病 | 合計(jì) | |
未注射疫苗 | 20 | x | A |
注射疫苗 | 30 | y | B |
合計(jì) | 50 | 50 | 100 |
P( K2≤K0) | 0.05 | 0.01 | 0.005 | 0.001 |
K0 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 相交 | B. | 相切 | C. | 相離 | D. | 不確定 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com