12.已知定點(diǎn)A(4,0),P是橢圓4x2+9y2=36上的動點(diǎn),則線段AP的中點(diǎn)的軌跡方程是4(x-2)2+9y2=9.

分析 設(shè)P(m,n),即有4m2+9n2=36,AP的中點(diǎn)為(x,y),運(yùn)用中點(diǎn)坐標(biāo)公式,以及代入法,即可得到所求軌跡方程.

解答 解:設(shè)P(m,n),即有4m2+9n2=36,
AP的中點(diǎn)為(x,y),
即有2x=4+m,2y=n,
即m=2x-4,n=2y,
即有4(2x-4)2+9(2y)2=36,
即4(x-2)2+9y2=9.
故答案為:4(x-2)2+9y2=9.

點(diǎn)評 本題考查軌跡方程的求法,注意運(yùn)用中點(diǎn)坐標(biāo)公式和橢圓的方程,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F.短軸的一個端點(diǎn)為M,直線l:3x-4y=0交橢圓E于A,B兩點(diǎn).若|AF|+|BF|=4,點(diǎn)M到直線l的距離不小于$\frac{4}{5}$,則橢圓E的離心率的取值范圍是$({0,\frac{{\sqrt{3}}}{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x,其中x∈(0,1),以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為e1,以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率為e2,若對任意x∈(0,1)都有不等式$t<\frac{{{{({e_1}+{e_2})}^2}}}{8}$恒成立,則t的最大值為( 。
A.$\frac{7}{4}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,在平面直角坐標(biāo)系xOy中,F(xiàn)1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),B,C分別為橢圓上、下頂點(diǎn),直線BF2與橢圓的另一個交點(diǎn)為D,若tan∠F1BO=$\frac{3}{4}$,則直線CD的斜率為$\frac{12}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,PD=2PA.
(1)證明:CD⊥平面PAC;
(2)若E為AD的中點(diǎn),求證:CE∥平面PAB.
(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.平面直角坐標(biāo)系xoy中,點(diǎn)P為橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的下頂點(diǎn),M、N在橢圓上,若四邊形OPMN為平行四邊形,α為直線0N的傾斜角,若α∈[$\frac{π}{4}$,$\frac{π}{3}$],則橢圓C的離心率的取值范圍為$[\frac{\sqrt{6}}{3},\frac{2\sqrt{2}}{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)P(2,3),離心率e=$\frac{1}{2}$,直線1的方程為y=4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)AB是經(jīng)過(0,3)的任一弦(不經(jīng)過點(diǎn)P),設(shè)直線AB與直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1,k2,k3.問:是否存在常數(shù)λ,使得$\frac{1}{{k}_{1}}$十$\frac{1}{{k}_{2}}$=$\frac{λ}{{k}_{3}}$?若存在,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖1,已知正方體ABCD-A1B1C1D1的棱長為a,動點(diǎn)M、N、Q分別在線段AD1、B1C、C1D1上,當(dāng)三棱錐Q-BMN的正視圖如圖所示時,三棱錐Q-BMN的側(cè)視圖的面積等于(  )
A.$\frac{1}{4}{a}^{2}$B.$\frac{3}{4}{a}^{2}$C.$\frac{1}{2}{a}^{2}$D.$\frac{\sqrt{3}}{2}{a}^{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,其右焦點(diǎn)關(guān)于直線y=x+1的對稱點(diǎn)的縱坐標(biāo)是2,橢圓C的右頂點(diǎn)為D.(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m與橢圓C相交于A、B兩點(diǎn)(A、B與橢圓的左、右頂點(diǎn)不重合),且滿足DA⊥DB,求直線l在x軸上的截距.

查看答案和解析>>

同步練習(xí)冊答案