【題目】在三棱錐P﹣ABC中,PA⊥平面ABC,△ABC是邊長(zhǎng)為2的等邊三角形,且三棱錐P﹣ABC的外接球表面積為,則直線PC與平面PAB所成角的正切值為_____.
【答案】
【解析】
設(shè)三棱錐外接球的球心為O,半徑為R,求出R,設(shè)M為△ABC的中心,N為AB的中點(diǎn),
求出OM的長(zhǎng),再證明∠NPC就是直線PC與平面PAB所成角,利用直角三角函數(shù)求解.
設(shè)三棱錐外接球的球心為O,半徑為R,
則S球=4πR2,故R,
設(shè)M為△ABC的中心,N為AB的中點(diǎn),
則OM⊥平面ABC,且OC,NC,MC,
∴OM2,
∵PA⊥平面ABC,故PA=2OM=4,∴PN,且PA⊥CN,又CN⊥AB,AB∩PA=A,
∴CN⊥平面PAB,
所以∠NPC就是直線PC與平面PAB所成角.
∴tan∠NPC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰梯形ABCD中,AB∥DC,AB=2,BC=1,∠ABC=60°.動(dòng)點(diǎn)E和F分別在線段BC和DC上,且.
(1)當(dāng)λ,求||;
(2)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)是偶函數(shù)的導(dǎo)函數(shù),在區(qū)間上的唯一零點(diǎn)為2,并且當(dāng)時(shí),,則使得成立的的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次的一次學(xué)科測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.
(Ⅰ)求參加測(cè)試的總?cè)藬?shù)及分?jǐn)?shù)在[80,90)之間的人數(shù);
(Ⅱ)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,恰有一份分?jǐn)?shù)在[90,100)之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一年級(jí)共有名學(xué)生,其中男生名,女生名,該校組織了一次口語(yǔ)模擬考試(滿分為分).為研究這次口語(yǔ)考試成績(jī)?yōu)楦叻质欠衽c性別有關(guān),現(xiàn)按性別采用分層抽樣抽取名學(xué)生的成績(jī),按從低到高分成,,,,,,七組,并繪制成如圖所示的頻率分布直方圖.已知的頻率等于的頻率,的頻率與的頻率之比為,成績(jī)高于分的為“高分”.
(1)估計(jì)該校高一年級(jí)學(xué)生在口語(yǔ)考試中,成績(jī)?yōu)椤案叻帧钡娜藬?shù);
(2)請(qǐng)你根據(jù)已知條件將下列列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“該校高一年級(jí)學(xué)生在本次口語(yǔ)考試中成績(jī)及格(分以上(含分)為及格)與性別有關(guān)”?
口語(yǔ)成績(jī)及格 | 口語(yǔ)成績(jī)不及格 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校學(xué)生社團(tuán)心理學(xué)研究小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時(shí)間(單位:分鐘)之間的關(guān)系滿足如圖所示的曲線.當(dāng)時(shí),曲線是二次函數(shù)圖象的一部分,當(dāng)時(shí),曲線是函數(shù)圖象的一部分.根據(jù)專家研究,當(dāng)注意力指數(shù)大于80時(shí)學(xué)習(xí)效果最佳.
(1)試求的函數(shù)關(guān)系式;
(2)教師在什么時(shí)段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,平面平面,,,,,,.
(1)求證:平面;
(2)求二面角的正弦值;
(3)在棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:(a>0),過(guò)點(diǎn)P(-2,-4)的直線l的參數(shù)方程為(t為參數(shù)),l與C分別交于M,N.
(1)寫出C的平面直角坐標(biāo)系方程和l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com