18.已知P(x,y)是函數(shù)y=ax+2-1(a>0且a≠1)上任意一點,Q(y+1,x+2)在函數(shù)y=f(x)圖象上,g(x)=f(x)[f(x)+2f(2)-1].求g(x)的解析式.

分析 利用P(x,y)是函數(shù)y=ax+2-1(a>0且a≠1)上任意一點,Q(y+1,x+2)在函數(shù)y=f(x)圖象上,求出f(x)=logax,代入g(x)=f(x)[f(x)+2f(2)-1],求g(x)的解析式.

解答 解:令x′=y+1,y′=x+2,則x=y′-2,y=x′-1,
∵P(x,y)是函數(shù)y=ax+2-1(a>0且a≠1)上任意一點,
∴x′-1=ay′-1,
∴y′=logax′,
∴f(x)=logax.
∴g(x)=f(x)[f(x)+2f(2)-1]=loga2x+(2loga2-1)logax.

點評 本題考查函數(shù)的解析式,考查代入法的運用,確定f(x)=logax是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.如圖所示的數(shù)陣,第n行最右邊的數(shù)是n2+n-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{-2x+3y+5≥0}\end{array}\right.$,則目標函數(shù)z=x+2y的最大值為( 。
A.5B.4C.-1D.$\frac{16}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合A={x|x2-2x-8>0},B={-3,-1,1,3,5},則A∩B=( 。
A.{-1,1,3}B.{-3,-1,1}C.{-3,5}D.{3,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖所示,在△ABC中,F(xiàn)C=2BF,AC=4AE,BC=3,AC=4,∠ACB=60°,則$\overrightarrow{BE}$•$\overrightarrow{FE}$=$\frac{15}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若復數(shù)z滿足(1+2i)•z=|2-i|,則$\overline{z}$(  )
A.1+2iB.$\sqrt{5}$(1-2i)C.$\frac{\sqrt{5}}{5}$(1+2i)D.$\frac{\sqrt{5}}{5}$(1-2i)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個互相垂直的單位向量,且$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow$=$\overrightarrow{{e}_{2}}$,則|$\overrightarrow{a}$+2$\overrightarrow$|=( 。
A.2$\sqrt{2}$B.$\sqrt{5}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知變量x,y滿足$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$,則$\frac{x+y}{x+2}$的最大值為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.S=${C}_{27}^{1}$+${C}_{27}^{2}$+…+${C}_{27}^{27}$除以9的余數(shù)是( 。
A.8B.7C.6D.5

查看答案和解析>>

同步練習冊答案