A. | 4 | B. | 2$\sqrt{6}$ | C. | 5 | D. | $\frac{11}{2}$ |
分析 過A作x軸的垂線,與y=3交于點P,此時過點P作圓的切線PQ,切線長PQ最小,連接AQ,得到AQ垂直于PQ,先利用兩點間的距離公式求出AP的長,然后在直角三角形APQ中,利用勾股定理即可求出PQ
解答 解:如圖,當PA⊥x軸時,過P點作的切線長最短,
根據(jù)PQ為圓的切線,Q為切點得到AQ⊥PQ,
由圓的方程得到圓心(-2,-2),半徑為1
在直角三角形APQ中,AQ=1,PA=3-(-2)=5,
根據(jù)勾股定理得PQ=$\sqrt{{5}^{2}-{1}^{2}}$=2$\sqrt{6}$.
故選:B.
點評 此題考查學生掌握切線垂直于經(jīng)過切點的直徑,靈活運用勾股定理解決實際問題,是一道中檔題.本題的突破點是找出切線長的最小值.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{1}{e}$) | B. | ($\frac{1}{e}$,+∞) | C. | ($\frac{1}{e}$,e) | D. | (e,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈R,ex>0 | B. | ?x∈R,x2≥0 | C. | ?x0∈R,sinx0=2 | D. | ?x0∈R,2x0>x02 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 橢圓 | B. | 雙曲線 | C. | 拋物線 | D. | 圓 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | -$\frac{3}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com